| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poml4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 2 |  | poml4.p | ⊢  ⊥   =  ( ⊥𝑃 ‘ 𝐾 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝐾  ∈  HL ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) ) | 
						
							| 5 | 1 2 | polssatN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑌 )  ⊆  𝐴 ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  (  ⊥  ‘ 𝑌 )  ⊆  𝐴 ) | 
						
							| 7 | 4 6 | sstrd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝑋  ⊆  𝐴 ) | 
						
							| 8 | 3 7 6 | 3jca | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( 𝐾  ∈  HL  ∧  𝑋  ⊆  𝐴  ∧  (  ⊥  ‘ 𝑌 )  ⊆  𝐴 ) ) | 
						
							| 9 | 1 2 | 3polN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) )  =  (  ⊥  ‘ 𝑌 ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) )  =  (  ⊥  ‘ 𝑌 ) ) | 
						
							| 11 | 4 10 | jca | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑋  ⊆  (  ⊥  ‘ 𝑌 )  ∧  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) )  =  (  ⊥  ‘ 𝑌 ) ) ) | 
						
							| 12 | 1 2 | poml4N | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ⊆  𝐴  ∧  (  ⊥  ‘ 𝑌 )  ⊆  𝐴 )  →  ( ( 𝑋  ⊆  (  ⊥  ‘ 𝑌 )  ∧  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) )  =  (  ⊥  ‘ 𝑌 ) )  →  ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∩  (  ⊥  ‘ 𝑌 ) ) )  ∩  (  ⊥  ‘ 𝑌 ) )  =  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) ) ) ) | 
						
							| 13 | 8 11 12 | sylc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  𝐴  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∩  (  ⊥  ‘ 𝑌 ) ) )  ∩  (  ⊥  ‘ 𝑌 ) )  =  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) ) ) |