| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poml6.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
| 2 |
|
poml6.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝐾 ∈ HL ) |
| 4 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ∈ 𝐶 ) |
| 5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 6 |
5 1
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 7 |
3 4 6
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 8 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑌 ∈ 𝐶 ) |
| 9 |
5 1
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 10 |
3 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ 𝑌 ) |
| 12 |
2 1
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 13 |
3 8 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 14 |
5 2
|
poml4N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 16 |
3 7 10 11 13 15
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 17 |
2 1
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 18 |
3 4 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 19 |
16 18
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = 𝑋 ) |