| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcllem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
osumcllem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
osumcllem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
osumcllem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 5 |
|
osumcllem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 6 |
|
osumcllem.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
| 7 |
|
osumcllem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
| 8 |
|
osumcllem.u |
⊢ 𝑈 = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) |
| 9 |
3 4
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝐾 ∈ HL ) |
| 12 |
3 4
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| 14 |
3 5
|
2polssN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ) |
| 15 |
11 13 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ) |
| 16 |
15 8
|
sseqtrrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ⊆ 𝑈 ) |
| 17 |
10 16
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ 𝑈 ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
| 19 |
18
|
snssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → { 𝑝 } ⊆ 𝑈 ) |
| 20 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ 𝐴 ) |
| 21 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) |
| 22 |
11 13 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) |
| 23 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ⊆ 𝐴 ) |
| 24 |
11 22 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ⊆ 𝐴 ) |
| 25 |
8 24
|
eqsstrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑈 ⊆ 𝐴 ) |
| 26 |
19 25
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → { 𝑝 } ⊆ 𝐴 ) |
| 27 |
|
eqid |
⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) |
| 28 |
3 27 5
|
polsubN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ∈ ( PSubSp ‘ 𝐾 ) ) |
| 29 |
11 22 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ∈ ( PSubSp ‘ 𝐾 ) ) |
| 30 |
8 29
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑈 ∈ ( PSubSp ‘ 𝐾 ) ) |
| 31 |
3 27 4
|
paddss |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ { 𝑝 } ⊆ 𝐴 ∧ 𝑈 ∈ ( PSubSp ‘ 𝐾 ) ) ) → ( ( 𝑋 ⊆ 𝑈 ∧ { 𝑝 } ⊆ 𝑈 ) ↔ ( 𝑋 + { 𝑝 } ) ⊆ 𝑈 ) ) |
| 32 |
11 20 26 30 31
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑋 ⊆ 𝑈 ∧ { 𝑝 } ⊆ 𝑈 ) ↔ ( 𝑋 + { 𝑝 } ) ⊆ 𝑈 ) ) |
| 33 |
17 19 32
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑋 + { 𝑝 } ) ⊆ 𝑈 ) |
| 34 |
7 33
|
eqsstrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑀 ⊆ 𝑈 ) |
| 35 |
|
sseqin2 |
⊢ ( 𝑀 ⊆ 𝑈 ↔ ( 𝑈 ∩ 𝑀 ) = 𝑀 ) |
| 36 |
34 35
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑈 ∩ 𝑀 ) = 𝑀 ) |