Metamath Proof Explorer


Theorem sspadd1

Description: A projective subspace sum is a superset of its first summand. ( ssun1 analog.) (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion sspadd1 ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 ssun1 𝑋 ⊆ ( 𝑋𝑌 )
4 ssun1 ( 𝑋𝑌 ) ⊆ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } )
5 3 4 sstri 𝑋 ⊆ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } )
6 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
7 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
8 6 7 1 2 paddval ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) )
9 5 8 sseqtrrid ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) )