Metamath Proof Explorer


Theorem paddval

Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion paddval ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 biid ( 𝐾𝐵𝐾𝐵 )
6 3 fvexi 𝐴 ∈ V
7 6 elpw2 ( 𝑋 ∈ 𝒫 𝐴𝑋𝐴 )
8 6 elpw2 ( 𝑌 ∈ 𝒫 𝐴𝑌𝐴 )
9 1 2 3 4 paddfval ( 𝐾𝐵+ = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) ) )
10 9 oveqd ( 𝐾𝐵 → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) ) 𝑌 ) )
11 10 3ad2ant1 ( ( 𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) ) 𝑌 ) )
12 simpl ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 )
13 simpr ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 )
14 unexg ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋𝑌 ) ∈ V )
15 6 rabex { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ∈ V
16 unexg ( ( ( 𝑋𝑌 ) ∈ V ∧ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ∈ V ) → ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ∈ V )
17 14 15 16 sylancl ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ∈ V )
18 12 13 17 3jca ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ∈ V ) )
19 18 3adant1 ( ( 𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ∈ V ) )
20 uneq1 ( 𝑚 = 𝑋 → ( 𝑚𝑛 ) = ( 𝑋𝑛 ) )
21 rexeq ( 𝑚 = 𝑋 → ( ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) ↔ ∃ 𝑞𝑋𝑟𝑛 𝑝 ( 𝑞 𝑟 ) ) )
22 21 rabbidv ( 𝑚 = 𝑋 → { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } = { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } )
23 20 22 uneq12d ( 𝑚 = 𝑋 → ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) = ( ( 𝑋𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) )
24 uneq2 ( 𝑛 = 𝑌 → ( 𝑋𝑛 ) = ( 𝑋𝑌 ) )
25 rexeq ( 𝑛 = 𝑌 → ( ∃ 𝑟𝑛 𝑝 ( 𝑞 𝑟 ) ↔ ∃ 𝑟𝑌 𝑝 ( 𝑞 𝑟 ) ) )
26 25 rexbidv ( 𝑛 = 𝑌 → ( ∃ 𝑞𝑋𝑟𝑛 𝑝 ( 𝑞 𝑟 ) ↔ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) ) )
27 26 rabbidv ( 𝑛 = 𝑌 → { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } = { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } )
28 24 27 uneq12d ( 𝑛 = 𝑌 → ( ( 𝑋𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
29 eqid ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) ) = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) )
30 23 28 29 ovmpog ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ∈ V ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
31 19 30 syl ( ( 𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( 𝑞 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
32 11 31 eqtrd ( ( 𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
33 5 7 8 32 syl3anbr ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )