| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 5 |
|
biid |
⊢ ( 𝐾 ∈ 𝐵 ↔ 𝐾 ∈ 𝐵 ) |
| 6 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
| 7 |
6
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) |
| 8 |
6
|
elpw2 |
⊢ ( 𝑌 ∈ 𝒫 𝐴 ↔ 𝑌 ⊆ 𝐴 ) |
| 9 |
1 2 3 4
|
paddfval |
⊢ ( 𝐾 ∈ 𝐵 → + = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 10 |
9
|
oveqd |
⊢ ( 𝐾 ∈ 𝐵 → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) ) |
| 12 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 ) |
| 14 |
|
unexg |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ∈ V ) |
| 15 |
6
|
rabex |
⊢ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V |
| 16 |
|
unexg |
⊢ ( ( ( 𝑋 ∪ 𝑌 ) ∈ V ∧ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) |
| 17 |
14 15 16
|
sylancl |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) |
| 18 |
12 13 17
|
3jca |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) ) |
| 19 |
18
|
3adant1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) ) |
| 20 |
|
uneq1 |
⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∪ 𝑛 ) = ( 𝑋 ∪ 𝑛 ) ) |
| 21 |
|
rexeq |
⊢ ( 𝑚 = 𝑋 → ( ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 22 |
21
|
rabbidv |
⊢ ( 𝑚 = 𝑋 → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
| 23 |
20 22
|
uneq12d |
⊢ ( 𝑚 = 𝑋 → ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) = ( ( 𝑋 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 24 |
|
uneq2 |
⊢ ( 𝑛 = 𝑌 → ( 𝑋 ∪ 𝑛 ) = ( 𝑋 ∪ 𝑌 ) ) |
| 25 |
|
rexeq |
⊢ ( 𝑛 = 𝑌 → ( ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑛 = 𝑌 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 27 |
26
|
rabbidv |
⊢ ( 𝑛 = 𝑌 → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
| 28 |
24 27
|
uneq12d |
⊢ ( 𝑛 = 𝑌 → ( ( 𝑋 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 29 |
|
eqid |
⊢ ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 30 |
23 28 29
|
ovmpog |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 31 |
19 30
|
syl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 32 |
11 31
|
eqtrd |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 33 |
5 7 8 32
|
syl3anbr |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |