Metamath Proof Explorer


Theorem elpadd

Description: Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion elpadd ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 1 2 3 4 paddval ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
6 5 eleq2d ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ 𝑆 ∈ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ) )
7 elun ( 𝑆 ∈ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ↔ ( 𝑆 ∈ ( 𝑋𝑌 ) ∨ 𝑆 ∈ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
8 elun ( 𝑆 ∈ ( 𝑋𝑌 ) ↔ ( 𝑆𝑋𝑆𝑌 ) )
9 breq1 ( 𝑝 = 𝑆 → ( 𝑝 ( 𝑞 𝑟 ) ↔ 𝑆 ( 𝑞 𝑟 ) ) )
10 9 2rexbidv ( 𝑝 = 𝑆 → ( ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) ↔ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) )
11 10 elrab ( 𝑆 ∈ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ↔ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) )
12 8 11 orbi12i ( ( 𝑆 ∈ ( 𝑋𝑌 ) ∨ 𝑆 ∈ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ↔ ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) ) )
13 7 12 bitri ( 𝑆 ∈ ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) ↔ ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) ) )
14 6 13 bitrdi ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) ) ) )