| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcllem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
osumcllem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
osumcllem.a |
|- A = ( Atoms ` K ) |
| 4 |
|
osumcllem.p |
|- .+ = ( +P ` K ) |
| 5 |
|
osumcllem.o |
|- ._|_ = ( _|_P ` K ) |
| 6 |
|
osumcllem.c |
|- C = ( PSubCl ` K ) |
| 7 |
|
osumcllem.m |
|- M = ( X .+ { p } ) |
| 8 |
|
osumcllem.u |
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) |
| 9 |
3 4
|
sspadd1 |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> X C_ ( X .+ Y ) ) |
| 10 |
9
|
adantr |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ ( X .+ Y ) ) |
| 11 |
|
simpl1 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> K e. HL ) |
| 12 |
3 4
|
paddssat |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
| 13 |
12
|
adantr |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( X .+ Y ) C_ A ) |
| 14 |
3 5
|
2polssN |
|- ( ( K e. HL /\ ( X .+ Y ) C_ A ) -> ( X .+ Y ) C_ ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) ) |
| 15 |
11 13 14
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( X .+ Y ) C_ ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) ) |
| 16 |
15 8
|
sseqtrrdi |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( X .+ Y ) C_ U ) |
| 17 |
10 16
|
sstrd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ U ) |
| 18 |
|
simpr |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> p e. U ) |
| 19 |
18
|
snssd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> { p } C_ U ) |
| 20 |
|
simpl2 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ A ) |
| 21 |
3 5
|
polssatN |
|- ( ( K e. HL /\ ( X .+ Y ) C_ A ) -> ( ._|_ ` ( X .+ Y ) ) C_ A ) |
| 22 |
11 13 21
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( ._|_ ` ( X .+ Y ) ) C_ A ) |
| 23 |
3 5
|
polssatN |
|- ( ( K e. HL /\ ( ._|_ ` ( X .+ Y ) ) C_ A ) -> ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) C_ A ) |
| 24 |
11 22 23
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) C_ A ) |
| 25 |
8 24
|
eqsstrid |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> U C_ A ) |
| 26 |
19 25
|
sstrd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> { p } C_ A ) |
| 27 |
|
eqid |
|- ( PSubSp ` K ) = ( PSubSp ` K ) |
| 28 |
3 27 5
|
polsubN |
|- ( ( K e. HL /\ ( ._|_ ` ( X .+ Y ) ) C_ A ) -> ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) e. ( PSubSp ` K ) ) |
| 29 |
11 22 28
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) e. ( PSubSp ` K ) ) |
| 30 |
8 29
|
eqeltrid |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> U e. ( PSubSp ` K ) ) |
| 31 |
3 27 4
|
paddss |
|- ( ( K e. HL /\ ( X C_ A /\ { p } C_ A /\ U e. ( PSubSp ` K ) ) ) -> ( ( X C_ U /\ { p } C_ U ) <-> ( X .+ { p } ) C_ U ) ) |
| 32 |
11 20 26 30 31
|
syl13anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( ( X C_ U /\ { p } C_ U ) <-> ( X .+ { p } ) C_ U ) ) |
| 33 |
17 19 32
|
mpbi2and |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( X .+ { p } ) C_ U ) |
| 34 |
7 33
|
eqsstrid |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> M C_ U ) |
| 35 |
|
sseqin2 |
|- ( M C_ U <-> ( U i^i M ) = M ) |
| 36 |
34 35
|
sylib |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( U i^i M ) = M ) |