| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcl.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 2 |
|
osumcl.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 3 |
|
osumcl.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝐾 ∈ HL ) |
| 5 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑋 ∈ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 7 |
6 3
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 8 |
4 5 7
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 9 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ∈ 𝐶 ) |
| 10 |
6 3
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 11 |
4 9 10
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 12 |
6 1
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 13 |
4 8 11 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 14 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 = ∅ ) → 𝐾 ∈ HL ) |
| 15 |
|
oveq1 |
⊢ ( 𝑋 = ∅ → ( 𝑋 + 𝑌 ) = ( ∅ + 𝑌 ) ) |
| 16 |
6 1
|
padd02 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( ∅ + 𝑌 ) = 𝑌 ) |
| 17 |
4 11 16
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ∅ + 𝑌 ) = 𝑌 ) |
| 18 |
15 17
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 = ∅ ) → ( 𝑋 + 𝑌 ) = 𝑌 ) |
| 19 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 = ∅ ) → 𝑌 ∈ 𝐶 ) |
| 20 |
18 19
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 = ∅ ) → ( 𝑋 + 𝑌 ) ∈ 𝐶 ) |
| 21 |
2 3
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ∈ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) |
| 22 |
14 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 = ∅ ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) |
| 23 |
1 2 3
|
osumcllem11N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ) |
| 24 |
23
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋 + 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ) |
| 25 |
24
|
eqcomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑋 ≠ ∅ ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) |
| 26 |
22 25
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) |
| 27 |
6 2 3
|
ispsubclN |
⊢ ( 𝐾 ∈ HL → ( ( 𝑋 + 𝑌 ) ∈ 𝐶 ↔ ( ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) ) ) |
| 28 |
4 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ( 𝑋 + 𝑌 ) ∈ 𝐶 ↔ ( ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) ) ) |
| 29 |
13 26 28
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐶 ) |