Metamath Proof Explorer


Theorem osumclN

Description: Closure of orthogonal sum. If X and Y are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcl.p +˙=+𝑃K
osumcl.o ˙=𝑃K
osumcl.c C=PSubClK
Assertion osumclN KHLXCYCX˙YX+˙YC

Proof

Step Hyp Ref Expression
1 osumcl.p +˙=+𝑃K
2 osumcl.o ˙=𝑃K
3 osumcl.c C=PSubClK
4 simpl1 KHLXCYCX˙YKHL
5 simpl2 KHLXCYCX˙YXC
6 eqid AtomsK=AtomsK
7 6 3 psubclssatN KHLXCXAtomsK
8 4 5 7 syl2anc KHLXCYCX˙YXAtomsK
9 simpl3 KHLXCYCX˙YYC
10 6 3 psubclssatN KHLYCYAtomsK
11 4 9 10 syl2anc KHLXCYCX˙YYAtomsK
12 6 1 paddssat KHLXAtomsKYAtomsKX+˙YAtomsK
13 4 8 11 12 syl3anc KHLXCYCX˙YX+˙YAtomsK
14 simpll1 KHLXCYCX˙YX=KHL
15 oveq1 X=X+˙Y=+˙Y
16 6 1 padd02 KHLYAtomsK+˙Y=Y
17 4 11 16 syl2anc KHLXCYCX˙Y+˙Y=Y
18 15 17 sylan9eqr KHLXCYCX˙YX=X+˙Y=Y
19 simpll3 KHLXCYCX˙YX=YC
20 18 19 eqeltrd KHLXCYCX˙YX=X+˙YC
21 2 3 psubcli2N KHLX+˙YC˙˙X+˙Y=X+˙Y
22 14 20 21 syl2anc KHLXCYCX˙YX=˙˙X+˙Y=X+˙Y
23 1 2 3 osumcllem11N KHLXCYCX˙YXX+˙Y=˙˙X+˙Y
24 23 anassrs KHLXCYCX˙YXX+˙Y=˙˙X+˙Y
25 24 eqcomd KHLXCYCX˙YX˙˙X+˙Y=X+˙Y
26 22 25 pm2.61dane KHLXCYCX˙Y˙˙X+˙Y=X+˙Y
27 6 2 3 ispsubclN KHLX+˙YCX+˙YAtomsK˙˙X+˙Y=X+˙Y
28 4 27 syl KHLXCYCX˙YX+˙YCX+˙YAtomsK˙˙X+˙Y=X+˙Y
29 13 26 28 mpbir2and KHLXCYCX˙YX+˙YC