Metamath Proof Explorer


Theorem psubclssatN

Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclssat.a A=AtomsK
psubclssat.c C=PSubClK
Assertion psubclssatN KDXCXA

Proof

Step Hyp Ref Expression
1 psubclssat.a A=AtomsK
2 psubclssat.c C=PSubClK
3 eqid 𝑃K=𝑃K
4 1 3 2 psubcliN KDXCXA𝑃K𝑃KX=X
5 4 simpld KDXCXA