| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcllem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
osumcllem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
osumcllem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
osumcllem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 5 |
|
osumcllem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 6 |
|
osumcllem.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
| 7 |
|
osumcllem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
| 8 |
|
osumcllem.u |
⊢ 𝑈 = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) |
| 9 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝐾 ∈ HL ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ 𝐴 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
| 12 |
11
|
snssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → { 𝑝 } ⊆ 𝑈 ) |
| 13 |
3 4
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| 15 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) |
| 16 |
9 14 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) |
| 17 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ⊆ 𝐴 ) |
| 18 |
9 16 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) ⊆ 𝐴 ) |
| 19 |
8 18
|
eqsstrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑈 ⊆ 𝐴 ) |
| 20 |
12 19
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → { 𝑝 } ⊆ 𝐴 ) |
| 21 |
3 4
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ { 𝑝 } ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + { 𝑝 } ) ) |
| 22 |
9 10 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ ( 𝑋 + { 𝑝 } ) ) |
| 23 |
22 7
|
sseqtrrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ 𝑀 ) |
| 24 |
1 2 3 4 5 6 7 8
|
osumcllem1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → ( 𝑈 ∩ 𝑀 ) = 𝑀 ) |
| 25 |
23 24
|
sseqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ⊆ ( 𝑈 ∩ 𝑀 ) ) |