| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsnkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochsnkr.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochsnkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochsnkr.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochsnkr.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
dochsnkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 7 |
|
dochsnkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 8 |
|
dochsnkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
dochsnkr.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 10 |
|
dochsnkr.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ) |
| 11 |
|
eldif |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∧ ¬ 𝑋 ∈ { 0 } ) ) |
| 12 |
|
nelne1 |
⊢ ( ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∧ ¬ 𝑋 ∈ { 0 } ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ) |
| 13 |
11 12
|
sylbi |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ) |
| 14 |
10 13
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ) |
| 15 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 16 |
4 6 7 15 9
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
| 17 |
1 2 3 4 5 8 16
|
dochn0nv |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) |