Step |
Hyp |
Ref |
Expression |
1 |
|
dochn0nv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochn0nv.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochn0nv.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochn0nv.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochn0nv.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dochn0nv.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dochn0nv.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
8 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 8 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
6 7 9
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
11 |
1 8 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
12 |
6 10 11
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
13 |
1 3 2 4 5
|
doch1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ 𝑉 ) = { 0 } ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑉 ) = { 0 } ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑉 ) ↔ ( ⊥ ‘ 𝑋 ) = { 0 } ) ) |
16 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
17 |
6 7 16
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
18 |
1 8 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
6 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
1 8 3 4
|
dih1rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑉 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
6 20
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
22 |
1 8 2 6 19 21
|
doch11 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑉 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) ) |
23 |
15 22
|
bitr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) = { 0 } ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) ) |
24 |
23
|
necon3bid |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ≠ { 0 } ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) |