Step |
Hyp |
Ref |
Expression |
1 |
|
dochn0nv.h |
|- H = ( LHyp ` K ) |
2 |
|
dochn0nv.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochn0nv.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochn0nv.v |
|- V = ( Base ` U ) |
5 |
|
dochn0nv.z |
|- .0. = ( 0g ` U ) |
6 |
|
dochn0nv.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
dochn0nv.x |
|- ( ph -> X C_ V ) |
8 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
9 |
1 8 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
10 |
6 7 9
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
11 |
1 8 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ._|_ ` X ) ) |
12 |
6 10 11
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ._|_ ` X ) ) |
13 |
1 3 2 4 5
|
doch1 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` V ) = { .0. } ) |
14 |
6 13
|
syl |
|- ( ph -> ( ._|_ ` V ) = { .0. } ) |
15 |
12 14
|
eqeq12d |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ._|_ ` V ) <-> ( ._|_ ` X ) = { .0. } ) ) |
16 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) C_ V ) |
17 |
6 7 16
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) C_ V ) |
18 |
1 8 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) C_ V ) -> ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
19 |
6 17 18
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
20 |
1 8 3 4
|
dih1rn |
|- ( ( K e. HL /\ W e. H ) -> V e. ran ( ( DIsoH ` K ) ` W ) ) |
21 |
6 20
|
syl |
|- ( ph -> V e. ran ( ( DIsoH ` K ) ` W ) ) |
22 |
1 8 2 6 19 21
|
doch11 |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ._|_ ` V ) <-> ( ._|_ ` ( ._|_ ` X ) ) = V ) ) |
23 |
15 22
|
bitr3d |
|- ( ph -> ( ( ._|_ ` X ) = { .0. } <-> ( ._|_ ` ( ._|_ ` X ) ) = V ) ) |
24 |
23
|
necon3bid |
|- ( ph -> ( ( ._|_ ` X ) =/= { .0. } <-> ( ._|_ ` ( ._|_ ` X ) ) =/= V ) ) |