Step |
Hyp |
Ref |
Expression |
1 |
|
dihoml4c.h |
|- H = ( LHyp ` K ) |
2 |
|
dihoml4c.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
dihoml4c.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
dihoml4c.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
5 |
|
dihoml4c.x |
|- ( ph -> X e. ran I ) |
6 |
|
dihoml4c.y |
|- ( ph -> Y e. ran I ) |
7 |
|
dihoml4c.l |
|- ( ph -> X C_ Y ) |
8 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
9 |
|
inss1 |
|- ( ( ._|_ ` X ) i^i Y ) C_ ( ._|_ ` X ) |
10 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
11 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
12 |
1 10 2 11
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
13 |
4 5 12
|
syl2anc |
|- ( ph -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
14 |
1 10 11 3
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( ._|_ ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
15 |
4 13 14
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
16 |
9 15
|
sstrid |
|- ( ph -> ( ( ._|_ ` X ) i^i Y ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
17 |
1 2 10 11 3
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ._|_ ` X ) i^i Y ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) e. ran I ) |
18 |
4 16 17
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) e. ran I ) |
19 |
8 1 2 4 18 6
|
dihmeet2 |
|- ( ph -> ( `' I ` ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) ) = ( ( `' I ` ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) ) ( meet ` K ) ( `' I ` Y ) ) ) |
20 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
21 |
1 2 10 11 3
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( ._|_ ` X ) e. ran I ) |
22 |
4 13 21
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) e. ran I ) |
23 |
1 2
|
dihmeetcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ._|_ ` X ) e. ran I /\ Y e. ran I ) ) -> ( ( ._|_ ` X ) i^i Y ) e. ran I ) |
24 |
4 22 6 23
|
syl12anc |
|- ( ph -> ( ( ._|_ ` X ) i^i Y ) e. ran I ) |
25 |
20 1 2 3 4 24
|
dochvalr3 |
|- ( ph -> ( ( oc ` K ) ` ( `' I ` ( ( ._|_ ` X ) i^i Y ) ) ) = ( `' I ` ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) ) ) |
26 |
8 1 2 4 22 6
|
dihmeet2 |
|- ( ph -> ( `' I ` ( ( ._|_ ` X ) i^i Y ) ) = ( ( `' I ` ( ._|_ ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) |
27 |
20 1 2 3 4 5
|
dochvalr3 |
|- ( ph -> ( ( oc ` K ) ` ( `' I ` X ) ) = ( `' I ` ( ._|_ ` X ) ) ) |
28 |
27
|
oveq1d |
|- ( ph -> ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) = ( ( `' I ` ( ._|_ ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) |
29 |
26 28
|
eqtr4d |
|- ( ph -> ( `' I ` ( ( ._|_ ` X ) i^i Y ) ) = ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) |
30 |
29
|
fveq2d |
|- ( ph -> ( ( oc ` K ) ` ( `' I ` ( ( ._|_ ` X ) i^i Y ) ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) ) |
31 |
25 30
|
eqtr3d |
|- ( ph -> ( `' I ` ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) ) |
32 |
31
|
oveq1d |
|- ( ph -> ( ( `' I ` ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) ) ( meet ` K ) ( `' I ` Y ) ) = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) ( meet ` K ) ( `' I ` Y ) ) ) |
33 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
34 |
33 1 2 4 5 6
|
dihcnvord |
|- ( ph -> ( ( `' I ` X ) ( le ` K ) ( `' I ` Y ) <-> X C_ Y ) ) |
35 |
7 34
|
mpbird |
|- ( ph -> ( `' I ` X ) ( le ` K ) ( `' I ` Y ) ) |
36 |
4
|
simpld |
|- ( ph -> K e. HL ) |
37 |
|
hloml |
|- ( K e. HL -> K e. OML ) |
38 |
36 37
|
syl |
|- ( ph -> K e. OML ) |
39 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
40 |
39 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
41 |
4 5 40
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
42 |
39 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( `' I ` Y ) e. ( Base ` K ) ) |
43 |
4 6 42
|
syl2anc |
|- ( ph -> ( `' I ` Y ) e. ( Base ` K ) ) |
44 |
39 33 8 20
|
omllaw4 |
|- ( ( K e. OML /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( ( `' I ` X ) ( le ` K ) ( `' I ` Y ) -> ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) ( meet ` K ) ( `' I ` Y ) ) = ( `' I ` X ) ) ) |
45 |
38 41 43 44
|
syl3anc |
|- ( ph -> ( ( `' I ` X ) ( le ` K ) ( `' I ` Y ) -> ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) ( meet ` K ) ( `' I ` Y ) ) = ( `' I ` X ) ) ) |
46 |
35 45
|
mpd |
|- ( ph -> ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( `' I ` X ) ) ( meet ` K ) ( `' I ` Y ) ) ) ( meet ` K ) ( `' I ` Y ) ) = ( `' I ` X ) ) |
47 |
19 32 46
|
3eqtrd |
|- ( ph -> ( `' I ` ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) ) = ( `' I ` X ) ) |
48 |
1 2
|
dihmeetcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) e. ran I /\ Y e. ran I ) ) -> ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) e. ran I ) |
49 |
4 18 6 48
|
syl12anc |
|- ( ph -> ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) e. ran I ) |
50 |
1 2 4 49 5
|
dihcnv11 |
|- ( ph -> ( ( `' I ` ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) ) = ( `' I ` X ) <-> ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) = X ) ) |
51 |
47 50
|
mpbid |
|- ( ph -> ( ( ._|_ ` ( ( ._|_ ` X ) i^i Y ) ) i^i Y ) = X ) |