Metamath Proof Explorer


Theorem dihoml4c

Description: Version of dihoml4 with closed subspaces. (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dihoml4c.h H = LHyp K
dihoml4c.i I = DIsoH K W
dihoml4c.o ˙ = ocH K W
dihoml4c.k φ K HL W H
dihoml4c.x φ X ran I
dihoml4c.y φ Y ran I
dihoml4c.l φ X Y
Assertion dihoml4c φ ˙ ˙ X Y Y = X

Proof

Step Hyp Ref Expression
1 dihoml4c.h H = LHyp K
2 dihoml4c.i I = DIsoH K W
3 dihoml4c.o ˙ = ocH K W
4 dihoml4c.k φ K HL W H
5 dihoml4c.x φ X ran I
6 dihoml4c.y φ Y ran I
7 dihoml4c.l φ X Y
8 eqid meet K = meet K
9 inss1 ˙ X Y ˙ X
10 eqid DVecH K W = DVecH K W
11 eqid Base DVecH K W = Base DVecH K W
12 1 10 2 11 dihrnss K HL W H X ran I X Base DVecH K W
13 4 5 12 syl2anc φ X Base DVecH K W
14 1 10 11 3 dochssv K HL W H X Base DVecH K W ˙ X Base DVecH K W
15 4 13 14 syl2anc φ ˙ X Base DVecH K W
16 9 15 sstrid φ ˙ X Y Base DVecH K W
17 1 2 10 11 3 dochcl K HL W H ˙ X Y Base DVecH K W ˙ ˙ X Y ran I
18 4 16 17 syl2anc φ ˙ ˙ X Y ran I
19 8 1 2 4 18 6 dihmeet2 φ I -1 ˙ ˙ X Y Y = I -1 ˙ ˙ X Y meet K I -1 Y
20 eqid oc K = oc K
21 1 2 10 11 3 dochcl K HL W H X Base DVecH K W ˙ X ran I
22 4 13 21 syl2anc φ ˙ X ran I
23 1 2 dihmeetcl K HL W H ˙ X ran I Y ran I ˙ X Y ran I
24 4 22 6 23 syl12anc φ ˙ X Y ran I
25 20 1 2 3 4 24 dochvalr3 φ oc K I -1 ˙ X Y = I -1 ˙ ˙ X Y
26 8 1 2 4 22 6 dihmeet2 φ I -1 ˙ X Y = I -1 ˙ X meet K I -1 Y
27 20 1 2 3 4 5 dochvalr3 φ oc K I -1 X = I -1 ˙ X
28 27 oveq1d φ oc K I -1 X meet K I -1 Y = I -1 ˙ X meet K I -1 Y
29 26 28 eqtr4d φ I -1 ˙ X Y = oc K I -1 X meet K I -1 Y
30 29 fveq2d φ oc K I -1 ˙ X Y = oc K oc K I -1 X meet K I -1 Y
31 25 30 eqtr3d φ I -1 ˙ ˙ X Y = oc K oc K I -1 X meet K I -1 Y
32 31 oveq1d φ I -1 ˙ ˙ X Y meet K I -1 Y = oc K oc K I -1 X meet K I -1 Y meet K I -1 Y
33 eqid K = K
34 33 1 2 4 5 6 dihcnvord φ I -1 X K I -1 Y X Y
35 7 34 mpbird φ I -1 X K I -1 Y
36 4 simpld φ K HL
37 hloml K HL K OML
38 36 37 syl φ K OML
39 eqid Base K = Base K
40 39 1 2 dihcnvcl K HL W H X ran I I -1 X Base K
41 4 5 40 syl2anc φ I -1 X Base K
42 39 1 2 dihcnvcl K HL W H Y ran I I -1 Y Base K
43 4 6 42 syl2anc φ I -1 Y Base K
44 39 33 8 20 omllaw4 K OML I -1 X Base K I -1 Y Base K I -1 X K I -1 Y oc K oc K I -1 X meet K I -1 Y meet K I -1 Y = I -1 X
45 38 41 43 44 syl3anc φ I -1 X K I -1 Y oc K oc K I -1 X meet K I -1 Y meet K I -1 Y = I -1 X
46 35 45 mpd φ oc K oc K I -1 X meet K I -1 Y meet K I -1 Y = I -1 X
47 19 32 46 3eqtrd φ I -1 ˙ ˙ X Y Y = I -1 X
48 1 2 dihmeetcl K HL W H ˙ ˙ X Y ran I Y ran I ˙ ˙ X Y Y ran I
49 4 18 6 48 syl12anc φ ˙ ˙ X Y Y ran I
50 1 2 4 49 5 dihcnv11 φ I -1 ˙ ˙ X Y Y = I -1 X ˙ ˙ X Y Y = X
51 47 50 mpbid φ ˙ ˙ X Y Y = X