Step |
Hyp |
Ref |
Expression |
1 |
|
dochsnkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochsnkr.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochsnkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochsnkr.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochsnkr.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dochsnkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
dochsnkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
dochsnkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dochsnkr.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
10 |
|
dochsnkr.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
13 |
1 3 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
14 |
1 2 3 4 5 6 7 8 9 10 12
|
dochsnkrlem2 |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
15 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
16 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) → 𝑋 ≠ 0 ) |
17 |
10 16
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
18 |
5 11 12 13 14 15 17
|
lsatel |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
dochsnkrlem3 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
21 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
22 |
4 6 7 21 9
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
23 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑉 ) |
24 |
8 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑉 ) |
25 |
24
|
ssdifssd |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ⊆ 𝑉 ) |
26 |
25 10
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
27 |
26
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
28 |
1 3 2 4 11 8 27
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
29 |
19 20 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑋 } ) ) |