Step |
Hyp |
Ref |
Expression |
1 |
|
dochsnkr.h |
|- H = ( LHyp ` K ) |
2 |
|
dochsnkr.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochsnkr.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochsnkr.v |
|- V = ( Base ` U ) |
5 |
|
dochsnkr.z |
|- .0. = ( 0g ` U ) |
6 |
|
dochsnkr.f |
|- F = ( LFnl ` U ) |
7 |
|
dochsnkr.l |
|- L = ( LKer ` U ) |
8 |
|
dochsnkr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dochsnkr.g |
|- ( ph -> G e. F ) |
10 |
|
dochsnkr.x |
|- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
11 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
12 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
13 |
1 3 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
14 |
1 2 3 4 5 6 7 8 9 10 12
|
dochsnkrlem2 |
|- ( ph -> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) |
15 |
10
|
eldifad |
|- ( ph -> X e. ( ._|_ ` ( L ` G ) ) ) |
16 |
|
eldifsni |
|- ( X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) -> X =/= .0. ) |
17 |
10 16
|
syl |
|- ( ph -> X =/= .0. ) |
18 |
5 11 12 13 14 15 17
|
lsatel |
|- ( ph -> ( ._|_ ` ( L ` G ) ) = ( ( LSpan ` U ) ` { X } ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
dochsnkrlem3 |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
21 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
22 |
4 6 7 21 9
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
23 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ V ) -> ( ._|_ ` ( L ` G ) ) C_ V ) |
24 |
8 22 23
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) C_ V ) |
25 |
24
|
ssdifssd |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) C_ V ) |
26 |
25 10
|
sseldd |
|- ( ph -> X e. V ) |
27 |
26
|
snssd |
|- ( ph -> { X } C_ V ) |
28 |
1 3 2 4 11 8 27
|
dochocsp |
|- ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) |
29 |
19 20 28
|
3eqtr3d |
|- ( ph -> ( L ` G ) = ( ._|_ ` { X } ) ) |