Description: Lemma for dochsnkr . (Contributed by NM, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dochsnkr.h | |- H = ( LHyp ` K ) |
|
| dochsnkr.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
| dochsnkr.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| dochsnkr.v | |- V = ( Base ` U ) |
||
| dochsnkr.z | |- .0. = ( 0g ` U ) |
||
| dochsnkr.f | |- F = ( LFnl ` U ) |
||
| dochsnkr.l | |- L = ( LKer ` U ) |
||
| dochsnkr.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| dochsnkr.g | |- ( ph -> G e. F ) |
||
| dochsnkr.x | |- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
||
| dochsnkr.a | |- A = ( LSAtoms ` U ) |
||
| Assertion | dochsnkrlem2 | |- ( ph -> ( ._|_ ` ( L ` G ) ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochsnkr.h | |- H = ( LHyp ` K ) |
|
| 2 | dochsnkr.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
| 3 | dochsnkr.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 4 | dochsnkr.v | |- V = ( Base ` U ) |
|
| 5 | dochsnkr.z | |- .0. = ( 0g ` U ) |
|
| 6 | dochsnkr.f | |- F = ( LFnl ` U ) |
|
| 7 | dochsnkr.l | |- L = ( LKer ` U ) |
|
| 8 | dochsnkr.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 9 | dochsnkr.g | |- ( ph -> G e. F ) |
|
| 10 | dochsnkr.x | |- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
|
| 11 | dochsnkr.a | |- A = ( LSAtoms ` U ) |
|
| 12 | 1 2 3 4 5 6 7 8 9 10 | dochsnkrlem1 | |- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V ) |
| 13 | 1 2 3 4 11 6 7 8 9 | dochkrsat2 | |- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ._|_ ` ( L ` G ) ) e. A ) ) |
| 14 | 12 13 | mpbid | |- ( ph -> ( ._|_ ` ( L ` G ) ) e. A ) |