| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsnkr.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochsnkr.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
dochsnkr.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dochsnkr.v |
|- V = ( Base ` U ) |
| 5 |
|
dochsnkr.z |
|- .0. = ( 0g ` U ) |
| 6 |
|
dochsnkr.f |
|- F = ( LFnl ` U ) |
| 7 |
|
dochsnkr.l |
|- L = ( LKer ` U ) |
| 8 |
|
dochsnkr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
dochsnkr.g |
|- ( ph -> G e. F ) |
| 10 |
|
dochsnkr.x |
|- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
dochsnkrlem1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V ) |
| 12 |
11
|
orcd |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V \/ ( L ` G ) = V ) ) |
| 13 |
1 2 3 4 6 7 8 9
|
dochkrshp4 |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V \/ ( L ` G ) = V ) ) ) |
| 14 |
12 13
|
mpbird |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |