Metamath Proof Explorer


Theorem dochsnkr

Description: A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses dochsnkr.h H = LHyp K
dochsnkr.o ˙ = ocH K W
dochsnkr.u U = DVecH K W
dochsnkr.v V = Base U
dochsnkr.z 0 ˙ = 0 U
dochsnkr.f F = LFnl U
dochsnkr.l L = LKer U
dochsnkr.k φ K HL W H
dochsnkr.g φ G F
dochsnkr.x φ X ˙ L G 0 ˙
Assertion dochsnkr φ L G = ˙ X

Proof

Step Hyp Ref Expression
1 dochsnkr.h H = LHyp K
2 dochsnkr.o ˙ = ocH K W
3 dochsnkr.u U = DVecH K W
4 dochsnkr.v V = Base U
5 dochsnkr.z 0 ˙ = 0 U
6 dochsnkr.f F = LFnl U
7 dochsnkr.l L = LKer U
8 dochsnkr.k φ K HL W H
9 dochsnkr.g φ G F
10 dochsnkr.x φ X ˙ L G 0 ˙
11 eqid LSpan U = LSpan U
12 eqid LSAtoms U = LSAtoms U
13 1 3 8 dvhlvec φ U LVec
14 1 2 3 4 5 6 7 8 9 10 12 dochsnkrlem2 φ ˙ L G LSAtoms U
15 10 eldifad φ X ˙ L G
16 eldifsni X ˙ L G 0 ˙ X 0 ˙
17 10 16 syl φ X 0 ˙
18 5 11 12 13 14 15 17 lsatel φ ˙ L G = LSpan U X
19 18 fveq2d φ ˙ ˙ L G = ˙ LSpan U X
20 1 2 3 4 5 6 7 8 9 10 dochsnkrlem3 φ ˙ ˙ L G = L G
21 1 3 8 dvhlmod φ U LMod
22 4 6 7 21 9 lkrssv φ L G V
23 1 3 4 2 dochssv K HL W H L G V ˙ L G V
24 8 22 23 syl2anc φ ˙ L G V
25 24 ssdifssd φ ˙ L G 0 ˙ V
26 25 10 sseldd φ X V
27 26 snssd φ X V
28 1 3 2 4 11 8 27 dochocsp φ ˙ LSpan U X = ˙ X
29 19 20 28 3eqtr3d φ L G = ˙ X