Metamath Proof Explorer


Theorem dochsnkr2

Description: Kernel of the explicit functional G determined by a nonzero vector X . Compare the more general lshpkr . (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochsnkr2.h H = LHyp K
dochsnkr2.o ˙ = ocH K W
dochsnkr2.u U = DVecH K W
dochsnkr2.v V = Base U
dochsnkr2.z 0 ˙ = 0 U
dochsnkr2.a + ˙ = + U
dochsnkr2.t · ˙ = U
dochsnkr2.l L = LKer U
dochsnkr2.d D = Scalar U
dochsnkr2.r R = Base D
dochsnkr2.g G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
dochsnkr2.k φ K HL W H
dochsnkr2.x φ X V 0 ˙
Assertion dochsnkr2 φ L G = ˙ X

Proof

Step Hyp Ref Expression
1 dochsnkr2.h H = LHyp K
2 dochsnkr2.o ˙ = ocH K W
3 dochsnkr2.u U = DVecH K W
4 dochsnkr2.v V = Base U
5 dochsnkr2.z 0 ˙ = 0 U
6 dochsnkr2.a + ˙ = + U
7 dochsnkr2.t · ˙ = U
8 dochsnkr2.l L = LKer U
9 dochsnkr2.d D = Scalar U
10 dochsnkr2.r R = Base D
11 dochsnkr2.g G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
12 dochsnkr2.k φ K HL W H
13 dochsnkr2.x φ X V 0 ˙
14 eqid LSpan U = LSpan U
15 eqid LSSum U = LSSum U
16 eqid LSHyp U = LSHyp U
17 1 3 12 dvhlvec φ U LVec
18 1 2 3 4 5 16 12 13 dochsnshp φ ˙ X LSHyp U
19 13 eldifad φ X V
20 1 2 3 4 5 14 15 12 13 dochexmidat φ ˙ X LSSum U LSpan U X = V
21 4 6 14 15 16 17 18 19 20 9 10 7 11 8 lshpkr φ L G = ˙ X