Metamath Proof Explorer


Theorem dochsnkr2cl

Description: The X determining functional G belongs to the atom formed by the orthocomplement of the kernel. (Contributed by NM, 4-Jan-2015)

Ref Expression
Hypotheses dochsnkr2.h H=LHypK
dochsnkr2.o ˙=ocHKW
dochsnkr2.u U=DVecHKW
dochsnkr2.v V=BaseU
dochsnkr2.z 0˙=0U
dochsnkr2.a +˙=+U
dochsnkr2.t ·˙=U
dochsnkr2.l L=LKerU
dochsnkr2.d D=ScalarU
dochsnkr2.r R=BaseD
dochsnkr2.g G=vVιkR|w˙Xv=w+˙k·˙X
dochsnkr2.k φKHLWH
dochsnkr2.x φXV0˙
Assertion dochsnkr2cl φX˙LG0˙

Proof

Step Hyp Ref Expression
1 dochsnkr2.h H=LHypK
2 dochsnkr2.o ˙=ocHKW
3 dochsnkr2.u U=DVecHKW
4 dochsnkr2.v V=BaseU
5 dochsnkr2.z 0˙=0U
6 dochsnkr2.a +˙=+U
7 dochsnkr2.t ·˙=U
8 dochsnkr2.l L=LKerU
9 dochsnkr2.d D=ScalarU
10 dochsnkr2.r R=BaseD
11 dochsnkr2.g G=vVιkR|w˙Xv=w+˙k·˙X
12 dochsnkr2.k φKHLWH
13 dochsnkr2.x φXV0˙
14 1 3 12 dvhlmod φULMod
15 13 eldifad φXV
16 eqid LSpanU=LSpanU
17 4 16 lspsnid ULModXVXLSpanUX
18 14 15 17 syl2anc φXLSpanUX
19 1 2 3 4 5 6 7 8 9 10 11 12 13 dochsnkr2 φLG=˙X
20 15 snssd φXV
21 1 3 2 4 16 12 20 dochocsp φ˙LSpanUX=˙X
22 19 21 eqtr4d φLG=˙LSpanUX
23 22 fveq2d φ˙LG=˙˙LSpanUX
24 eqid DIsoHKW=DIsoHKW
25 1 3 4 16 24 dihlsprn KHLWHXVLSpanUXranDIsoHKW
26 12 15 25 syl2anc φLSpanUXranDIsoHKW
27 1 24 2 dochoc KHLWHLSpanUXranDIsoHKW˙˙LSpanUX=LSpanUX
28 12 26 27 syl2anc φ˙˙LSpanUX=LSpanUX
29 23 28 eqtr2d φLSpanUX=˙LG
30 18 29 eleqtrd φX˙LG
31 eldifsni XV0˙X0˙
32 13 31 syl φX0˙
33 eldifsn X˙LG0˙X˙LGX0˙
34 30 32 33 sylanbrc φX˙LG0˙