Step |
Hyp |
Ref |
Expression |
1 |
|
dochsnkr2.h |
|- H = ( LHyp ` K ) |
2 |
|
dochsnkr2.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochsnkr2.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochsnkr2.v |
|- V = ( Base ` U ) |
5 |
|
dochsnkr2.z |
|- .0. = ( 0g ` U ) |
6 |
|
dochsnkr2.a |
|- .+ = ( +g ` U ) |
7 |
|
dochsnkr2.t |
|- .x. = ( .s ` U ) |
8 |
|
dochsnkr2.l |
|- L = ( LKer ` U ) |
9 |
|
dochsnkr2.d |
|- D = ( Scalar ` U ) |
10 |
|
dochsnkr2.r |
|- R = ( Base ` D ) |
11 |
|
dochsnkr2.g |
|- G = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) |
12 |
|
dochsnkr2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
dochsnkr2.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
14 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
13
|
eldifad |
|- ( ph -> X e. V ) |
16 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
17 |
4 16
|
lspsnid |
|- ( ( U e. LMod /\ X e. V ) -> X e. ( ( LSpan ` U ) ` { X } ) ) |
18 |
14 15 17
|
syl2anc |
|- ( ph -> X e. ( ( LSpan ` U ) ` { X } ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dochsnkr2 |
|- ( ph -> ( L ` G ) = ( ._|_ ` { X } ) ) |
20 |
15
|
snssd |
|- ( ph -> { X } C_ V ) |
21 |
1 3 2 4 16 12 20
|
dochocsp |
|- ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) |
22 |
19 21
|
eqtr4d |
|- ( ph -> ( L ` G ) = ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) |
23 |
22
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` G ) ) = ( ._|_ ` ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) ) |
24 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
25 |
1 3 4 16 24
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( ( LSpan ` U ) ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
26 |
12 15 25
|
syl2anc |
|- ( ph -> ( ( LSpan ` U ) ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
27 |
1 24 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( LSpan ` U ) ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) = ( ( LSpan ` U ) ` { X } ) ) |
28 |
12 26 27
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) = ( ( LSpan ` U ) ` { X } ) ) |
29 |
23 28
|
eqtr2d |
|- ( ph -> ( ( LSpan ` U ) ` { X } ) = ( ._|_ ` ( L ` G ) ) ) |
30 |
18 29
|
eleqtrd |
|- ( ph -> X e. ( ._|_ ` ( L ` G ) ) ) |
31 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
32 |
13 31
|
syl |
|- ( ph -> X =/= .0. ) |
33 |
|
eldifsn |
|- ( X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) <-> ( X e. ( ._|_ ` ( L ` G ) ) /\ X =/= .0. ) ) |
34 |
30 32 33
|
sylanbrc |
|- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |