Step |
Hyp |
Ref |
Expression |
1 |
|
dochsnkr2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochsnkr2.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochsnkr2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochsnkr2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochsnkr2.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dochsnkr2.a |
⊢ + = ( +g ‘ 𝑈 ) |
7 |
|
dochsnkr2.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
8 |
|
dochsnkr2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
9 |
|
dochsnkr2.d |
⊢ 𝐷 = ( Scalar ‘ 𝑈 ) |
10 |
|
dochsnkr2.r |
⊢ 𝑅 = ( Base ‘ 𝐷 ) |
11 |
|
dochsnkr2.g |
⊢ 𝐺 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
12 |
|
dochsnkr2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
dochsnkr2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
13
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
16 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
17 |
4 16
|
lspsnid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
18 |
14 15 17
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dochsnkr2 |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑋 } ) ) |
20 |
15
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
21 |
1 3 2 4 16 12 20
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
22 |
19 21
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) ) |
24 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
25 |
1 3 4 16 24
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
26 |
12 15 25
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
27 |
1 24 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
28 |
12 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
29 |
23 28
|
eqtr2d |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
30 |
18 29
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
31 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
32 |
13 31
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
33 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∧ 𝑋 ≠ 0 ) ) |
34 |
30 32 33
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ) |