Metamath Proof Explorer


Theorem dochflcl

Description: Closure of the explicit functional G determined by a nonzero vector X . Compare the more general lshpkrcl . (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochflcl.h 𝐻 = ( LHyp ‘ 𝐾 )
dochflcl.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochflcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochflcl.v 𝑉 = ( Base ‘ 𝑈 )
dochflcl.z 0 = ( 0g𝑈 )
dochflcl.a + = ( +g𝑈 )
dochflcl.t · = ( ·𝑠𝑈 )
dochflcl.f 𝐹 = ( LFnl ‘ 𝑈 )
dochflcl.d 𝐷 = ( Scalar ‘ 𝑈 )
dochflcl.r 𝑅 = ( Base ‘ 𝐷 )
dochflcl.g 𝐺 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) )
dochflcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochflcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion dochflcl ( 𝜑𝐺𝐹 )

Proof

Step Hyp Ref Expression
1 dochflcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochflcl.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochflcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochflcl.v 𝑉 = ( Base ‘ 𝑈 )
5 dochflcl.z 0 = ( 0g𝑈 )
6 dochflcl.a + = ( +g𝑈 )
7 dochflcl.t · = ( ·𝑠𝑈 )
8 dochflcl.f 𝐹 = ( LFnl ‘ 𝑈 )
9 dochflcl.d 𝐷 = ( Scalar ‘ 𝑈 )
10 dochflcl.r 𝑅 = ( Base ‘ 𝐷 )
11 dochflcl.g 𝐺 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) )
12 dochflcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 dochflcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
15 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
16 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
17 1 3 12 dvhlvec ( 𝜑𝑈 ∈ LVec )
18 1 2 3 4 5 16 12 13 dochsnshp ( 𝜑 → ( ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) )
19 13 eldifad ( 𝜑𝑋𝑉 )
20 1 2 3 4 5 14 15 12 13 dochexmidat ( 𝜑 → ( ( ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = 𝑉 )
21 4 6 14 15 16 17 18 19 20 9 10 7 11 8 lshpkrcl ( 𝜑𝐺𝐹 )