Step |
Hyp |
Ref |
Expression |
1 |
|
dochfl1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochfl1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochfl1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochfl1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochfl1.a |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
dochfl1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
dochfl1.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
dochfl1.d |
⊢ 𝐷 = ( Scalar ‘ 𝑈 ) |
9 |
|
dochfl1.r |
⊢ 𝑅 = ( Base ‘ 𝐷 ) |
10 |
|
dochfl1.i |
⊢ 1 = ( 1r ‘ 𝐷 ) |
11 |
|
dochfl1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
dochfl1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
13 |
|
dochfl1.g |
⊢ 𝐺 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
14 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑋 → ( 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ↔ 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
17 |
16
|
riotabidv |
⊢ ( 𝑣 = 𝑋 → ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) = ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
18 |
|
riotaex |
⊢ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ∈ V |
19 |
17 13 18
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
20 |
14 19
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
21 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
22 |
14
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
23 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
24 |
1 3 4 23 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
11 22 24
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
7 23
|
lss0cl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → 0 ∈ ( ⊥ ‘ { 𝑋 } ) ) |
27 |
21 25 26
|
syl2anc |
⊢ ( 𝜑 → 0 ∈ ( ⊥ ‘ { 𝑋 } ) ) |
28 |
4 8 6 10
|
lmodvs1 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
29 |
21 14 28
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 0 + ( 1 · 𝑋 ) ) = ( 0 + 𝑋 ) ) |
31 |
4 5 7
|
lmod0vlid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 + 𝑋 ) = 𝑋 ) |
32 |
21 14 31
|
syl2anc |
⊢ ( 𝜑 → ( 0 + 𝑋 ) = 𝑋 ) |
33 |
30 32
|
eqtr2d |
⊢ ( 𝜑 → 𝑋 = ( 0 + ( 1 · 𝑋 ) ) ) |
34 |
|
oveq1 |
⊢ ( 𝑤 = 0 → ( 𝑤 + ( 1 · 𝑋 ) ) = ( 0 + ( 1 · 𝑋 ) ) ) |
35 |
34
|
rspceeqv |
⊢ ( ( 0 ∈ ( ⊥ ‘ { 𝑋 } ) ∧ 𝑋 = ( 0 + ( 1 · 𝑋 ) ) ) → ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 1 · 𝑋 ) ) ) |
36 |
27 33 35
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 1 · 𝑋 ) ) ) |
37 |
8
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝐷 ∈ Ring ) |
38 |
9 10
|
ringidcl |
⊢ ( 𝐷 ∈ Ring → 1 ∈ 𝑅 ) |
39 |
21 37 38
|
3syl |
⊢ ( 𝜑 → 1 ∈ 𝑅 ) |
40 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
41 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
42 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
43 |
1 3 11
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
44 |
1 2 3 4 7 42 11 12
|
dochsnshp |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
45 |
1 2 3 4 7 40 41 11 12
|
dochexmidat |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = 𝑉 ) |
46 |
4 5 40 41 42 43 44 14 14 45 8 9 6
|
lshpsmreu |
⊢ ( 𝜑 → ∃! 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) |
47 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 · 𝑋 ) = ( 1 · 𝑋 ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝑘 = 1 → ( 𝑤 + ( 𝑘 · 𝑋 ) ) = ( 𝑤 + ( 1 · 𝑋 ) ) ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑘 = 1 → ( 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ↔ 𝑋 = ( 𝑤 + ( 1 · 𝑋 ) ) ) ) |
50 |
49
|
rexbidv |
⊢ ( 𝑘 = 1 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 1 · 𝑋 ) ) ) ) |
51 |
50
|
riota2 |
⊢ ( ( 1 ∈ 𝑅 ∧ ∃! 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 1 · 𝑋 ) ) ↔ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) = 1 ) ) |
52 |
39 46 51
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 1 · 𝑋 ) ) ↔ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) = 1 ) ) |
53 |
36 52
|
mpbid |
⊢ ( 𝜑 → ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑋 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) = 1 ) |
54 |
20 53
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = 1 ) |