Metamath Proof Explorer


Theorem dochfl1

Description: The value of the explicit functional G is 1 at the X that determines it. (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochfl1.h H=LHypK
dochfl1.o ˙=ocHKW
dochfl1.u U=DVecHKW
dochfl1.v V=BaseU
dochfl1.a +˙=+U
dochfl1.t ·˙=U
dochfl1.z 0˙=0U
dochfl1.d D=ScalarU
dochfl1.r R=BaseD
dochfl1.i 1˙=1D
dochfl1.k φKHLWH
dochfl1.x φXV0˙
dochfl1.g G=vVιkR|w˙Xv=w+˙k·˙X
Assertion dochfl1 φGX=1˙

Proof

Step Hyp Ref Expression
1 dochfl1.h H=LHypK
2 dochfl1.o ˙=ocHKW
3 dochfl1.u U=DVecHKW
4 dochfl1.v V=BaseU
5 dochfl1.a +˙=+U
6 dochfl1.t ·˙=U
7 dochfl1.z 0˙=0U
8 dochfl1.d D=ScalarU
9 dochfl1.r R=BaseD
10 dochfl1.i 1˙=1D
11 dochfl1.k φKHLWH
12 dochfl1.x φXV0˙
13 dochfl1.g G=vVιkR|w˙Xv=w+˙k·˙X
14 12 eldifad φXV
15 eqeq1 v=Xv=w+˙k·˙XX=w+˙k·˙X
16 15 rexbidv v=Xw˙Xv=w+˙k·˙Xw˙XX=w+˙k·˙X
17 16 riotabidv v=XιkR|w˙Xv=w+˙k·˙X=ιkR|w˙XX=w+˙k·˙X
18 riotaex ιkR|w˙XX=w+˙k·˙XV
19 17 13 18 fvmpt XVGX=ιkR|w˙XX=w+˙k·˙X
20 14 19 syl φGX=ιkR|w˙XX=w+˙k·˙X
21 1 3 11 dvhlmod φULMod
22 14 snssd φXV
23 eqid LSubSpU=LSubSpU
24 1 3 4 23 2 dochlss KHLWHXV˙XLSubSpU
25 11 22 24 syl2anc φ˙XLSubSpU
26 7 23 lss0cl ULMod˙XLSubSpU0˙˙X
27 21 25 26 syl2anc φ0˙˙X
28 4 8 6 10 lmodvs1 ULModXV1˙·˙X=X
29 21 14 28 syl2anc φ1˙·˙X=X
30 29 oveq2d φ0˙+˙1˙·˙X=0˙+˙X
31 4 5 7 lmod0vlid ULModXV0˙+˙X=X
32 21 14 31 syl2anc φ0˙+˙X=X
33 30 32 eqtr2d φX=0˙+˙1˙·˙X
34 oveq1 w=0˙w+˙1˙·˙X=0˙+˙1˙·˙X
35 34 rspceeqv 0˙˙XX=0˙+˙1˙·˙Xw˙XX=w+˙1˙·˙X
36 27 33 35 syl2anc φw˙XX=w+˙1˙·˙X
37 8 lmodring ULModDRing
38 9 10 ringidcl DRing1˙R
39 21 37 38 3syl φ1˙R
40 eqid LSpanU=LSpanU
41 eqid LSSumU=LSSumU
42 eqid LSHypU=LSHypU
43 1 3 11 dvhlvec φULVec
44 1 2 3 4 7 42 11 12 dochsnshp φ˙XLSHypU
45 1 2 3 4 7 40 41 11 12 dochexmidat φ˙XLSSumULSpanUX=V
46 4 5 40 41 42 43 44 14 14 45 8 9 6 lshpsmreu φ∃!kRw˙XX=w+˙k·˙X
47 oveq1 k=1˙k·˙X=1˙·˙X
48 47 oveq2d k=1˙w+˙k·˙X=w+˙1˙·˙X
49 48 eqeq2d k=1˙X=w+˙k·˙XX=w+˙1˙·˙X
50 49 rexbidv k=1˙w˙XX=w+˙k·˙Xw˙XX=w+˙1˙·˙X
51 50 riota2 1˙R∃!kRw˙XX=w+˙k·˙Xw˙XX=w+˙1˙·˙XιkR|w˙XX=w+˙k·˙X=1˙
52 39 46 51 syl2anc φw˙XX=w+˙1˙·˙XιkR|w˙XX=w+˙k·˙X=1˙
53 36 52 mpbid φιkR|w˙XX=w+˙k·˙X=1˙
54 20 53 eqtrd φGX=1˙