Step |
Hyp |
Ref |
Expression |
1 |
|
dochfl1.h |
|
2 |
|
dochfl1.o |
|
3 |
|
dochfl1.u |
|
4 |
|
dochfl1.v |
|
5 |
|
dochfl1.a |
|
6 |
|
dochfl1.t |
|
7 |
|
dochfl1.z |
|
8 |
|
dochfl1.d |
|
9 |
|
dochfl1.r |
|
10 |
|
dochfl1.i |
|
11 |
|
dochfl1.k |
|
12 |
|
dochfl1.x |
|
13 |
|
dochfl1.g |
|
14 |
12
|
eldifad |
|
15 |
|
eqeq1 |
|
16 |
15
|
rexbidv |
|
17 |
16
|
riotabidv |
|
18 |
|
riotaex |
|
19 |
17 13 18
|
fvmpt |
|
20 |
14 19
|
syl |
|
21 |
1 3 11
|
dvhlmod |
|
22 |
14
|
snssd |
|
23 |
|
eqid |
|
24 |
1 3 4 23 2
|
dochlss |
|
25 |
11 22 24
|
syl2anc |
|
26 |
7 23
|
lss0cl |
|
27 |
21 25 26
|
syl2anc |
|
28 |
4 8 6 10
|
lmodvs1 |
|
29 |
21 14 28
|
syl2anc |
|
30 |
29
|
oveq2d |
|
31 |
4 5 7
|
lmod0vlid |
|
32 |
21 14 31
|
syl2anc |
|
33 |
30 32
|
eqtr2d |
|
34 |
|
oveq1 |
|
35 |
34
|
rspceeqv |
|
36 |
27 33 35
|
syl2anc |
|
37 |
8
|
lmodring |
|
38 |
9 10
|
ringidcl |
|
39 |
21 37 38
|
3syl |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 3 11
|
dvhlvec |
|
44 |
1 2 3 4 7 42 11 12
|
dochsnshp |
|
45 |
1 2 3 4 7 40 41 11 12
|
dochexmidat |
|
46 |
4 5 40 41 42 43 44 14 14 45 8 9 6
|
lshpsmreu |
|
47 |
|
oveq1 |
|
48 |
47
|
oveq2d |
|
49 |
48
|
eqeq2d |
|
50 |
49
|
rexbidv |
|
51 |
50
|
riota2 |
|
52 |
39 46 51
|
syl2anc |
|
53 |
36 52
|
mpbid |
|
54 |
20 53
|
eqtrd |
|