Metamath Proof Explorer


Theorem dochsnshp

Description: The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015)

Ref Expression
Hypotheses dochsnshp.h H = LHyp K
dochsnshp.o ˙ = ocH K W
dochsnshp.u U = DVecH K W
dochsnshp.v V = Base U
dochsnshp.z 0 ˙ = 0 U
dochsnshp.y Y = LSHyp U
dochsnshp.k φ K HL W H
dochsnshp.x φ X V 0 ˙
Assertion dochsnshp φ ˙ X Y

Proof

Step Hyp Ref Expression
1 dochsnshp.h H = LHyp K
2 dochsnshp.o ˙ = ocH K W
3 dochsnshp.u U = DVecH K W
4 dochsnshp.v V = Base U
5 dochsnshp.z 0 ˙ = 0 U
6 dochsnshp.y Y = LSHyp U
7 dochsnshp.k φ K HL W H
8 dochsnshp.x φ X V 0 ˙
9 eqid LSpan U = LSpan U
10 8 eldifad φ X V
11 10 snssd φ X V
12 1 3 2 4 9 7 11 dochocsp φ ˙ LSpan U X = ˙ X
13 eqid LSAtoms U = LSAtoms U
14 1 3 7 dvhlmod φ U LMod
15 4 9 5 13 14 8 lsatlspsn φ LSpan U X LSAtoms U
16 1 3 2 13 6 7 15 dochsatshp φ ˙ LSpan U X Y
17 12 16 eqeltrrd φ ˙ X Y