| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsnshp.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochsnshp.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
dochsnshp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dochsnshp.v |
|- V = ( Base ` U ) |
| 5 |
|
dochsnshp.z |
|- .0. = ( 0g ` U ) |
| 6 |
|
dochsnshp.y |
|- Y = ( LSHyp ` U ) |
| 7 |
|
dochsnshp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
dochsnshp.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 9 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 10 |
8
|
eldifad |
|- ( ph -> X e. V ) |
| 11 |
10
|
snssd |
|- ( ph -> { X } C_ V ) |
| 12 |
1 3 2 4 9 7 11
|
dochocsp |
|- ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) |
| 13 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 14 |
1 3 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 15 |
4 9 5 13 14 8
|
lsatlspsn |
|- ( ph -> ( ( LSpan ` U ) ` { X } ) e. ( LSAtoms ` U ) ) |
| 16 |
1 3 2 13 6 7 15
|
dochsatshp |
|- ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) e. Y ) |
| 17 |
12 16
|
eqeltrrd |
|- ( ph -> ( ._|_ ` { X } ) e. Y ) |