Metamath Proof Explorer


Theorem dochsnshp

Description: The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015)

Ref Expression
Hypotheses dochsnshp.h
|- H = ( LHyp ` K )
dochsnshp.o
|- ._|_ = ( ( ocH ` K ) ` W )
dochsnshp.u
|- U = ( ( DVecH ` K ) ` W )
dochsnshp.v
|- V = ( Base ` U )
dochsnshp.z
|- .0. = ( 0g ` U )
dochsnshp.y
|- Y = ( LSHyp ` U )
dochsnshp.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dochsnshp.x
|- ( ph -> X e. ( V \ { .0. } ) )
Assertion dochsnshp
|- ( ph -> ( ._|_ ` { X } ) e. Y )

Proof

Step Hyp Ref Expression
1 dochsnshp.h
 |-  H = ( LHyp ` K )
2 dochsnshp.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 dochsnshp.u
 |-  U = ( ( DVecH ` K ) ` W )
4 dochsnshp.v
 |-  V = ( Base ` U )
5 dochsnshp.z
 |-  .0. = ( 0g ` U )
6 dochsnshp.y
 |-  Y = ( LSHyp ` U )
7 dochsnshp.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 dochsnshp.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
9 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
10 8 eldifad
 |-  ( ph -> X e. V )
11 10 snssd
 |-  ( ph -> { X } C_ V )
12 1 3 2 4 9 7 11 dochocsp
 |-  ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) )
13 eqid
 |-  ( LSAtoms ` U ) = ( LSAtoms ` U )
14 1 3 7 dvhlmod
 |-  ( ph -> U e. LMod )
15 4 9 5 13 14 8 lsatlspsn
 |-  ( ph -> ( ( LSpan ` U ) ` { X } ) e. ( LSAtoms ` U ) )
16 1 3 2 13 6 7 15 dochsatshp
 |-  ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) e. Y )
17 12 16 eqeltrrd
 |-  ( ph -> ( ._|_ ` { X } ) e. Y )