Step |
Hyp |
Ref |
Expression |
1 |
|
dochsatshp.h |
|- H = ( LHyp ` K ) |
2 |
|
dochsatshp.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochsatshp.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
dochsatshp.a |
|- A = ( LSAtoms ` U ) |
5 |
|
dochsatshp.y |
|- Y = ( LSHyp ` U ) |
6 |
|
dochsatshp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
dochsatshp.q |
|- ( ph -> Q e. A ) |
8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
9 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
10 |
8 4 9 7
|
lsatssv |
|- ( ph -> Q C_ ( Base ` U ) ) |
11 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
12 |
1 2 8 11 3
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ Q C_ ( Base ` U ) ) -> ( ._|_ ` Q ) e. ( LSubSp ` U ) ) |
13 |
6 10 12
|
syl2anc |
|- ( ph -> ( ._|_ ` Q ) e. ( LSubSp ` U ) ) |
14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
15 |
14 4 9 7
|
lsatn0 |
|- ( ph -> Q =/= { ( 0g ` U ) } ) |
16 |
1 2 3 8 14
|
doch0 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { ( 0g ` U ) } ) = ( Base ` U ) ) |
17 |
6 16
|
syl |
|- ( ph -> ( ._|_ ` { ( 0g ` U ) } ) = ( Base ` U ) ) |
18 |
17
|
eqeq2d |
|- ( ph -> ( ( ._|_ ` Q ) = ( ._|_ ` { ( 0g ` U ) } ) <-> ( ._|_ ` Q ) = ( Base ` U ) ) ) |
19 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
20 |
1 2 19 4
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. A ) -> Q e. ran ( ( DIsoH ` K ) ` W ) ) |
21 |
6 7 20
|
syl2anc |
|- ( ph -> Q e. ran ( ( DIsoH ` K ) ` W ) ) |
22 |
1 19 2 14
|
dih0rn |
|- ( ( K e. HL /\ W e. H ) -> { ( 0g ` U ) } e. ran ( ( DIsoH ` K ) ` W ) ) |
23 |
6 22
|
syl |
|- ( ph -> { ( 0g ` U ) } e. ran ( ( DIsoH ` K ) ` W ) ) |
24 |
1 19 3 6 21 23
|
doch11 |
|- ( ph -> ( ( ._|_ ` Q ) = ( ._|_ ` { ( 0g ` U ) } ) <-> Q = { ( 0g ` U ) } ) ) |
25 |
18 24
|
bitr3d |
|- ( ph -> ( ( ._|_ ` Q ) = ( Base ` U ) <-> Q = { ( 0g ` U ) } ) ) |
26 |
25
|
necon3bid |
|- ( ph -> ( ( ._|_ ` Q ) =/= ( Base ` U ) <-> Q =/= { ( 0g ` U ) } ) ) |
27 |
15 26
|
mpbird |
|- ( ph -> ( ._|_ ` Q ) =/= ( Base ` U ) ) |
28 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
29 |
8 28 14 4
|
islsat |
|- ( U e. LMod -> ( Q e. A <-> E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) ) ) |
30 |
9 29
|
syl |
|- ( ph -> ( Q e. A <-> E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) ) ) |
31 |
7 30
|
mpbid |
|- ( ph -> E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) ) |
32 |
|
eldifi |
|- ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) -> v e. ( Base ` U ) ) |
33 |
32
|
adantr |
|- ( ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> v e. ( Base ` U ) ) |
34 |
33
|
a1i |
|- ( ph -> ( ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> v e. ( Base ` U ) ) ) |
35 |
11 28
|
lspid |
|- ( ( U e. LMod /\ ( ._|_ ` Q ) e. ( LSubSp ` U ) ) -> ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) = ( ._|_ ` Q ) ) |
36 |
9 13 35
|
syl2anc |
|- ( ph -> ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) = ( ._|_ ` Q ) ) |
37 |
36
|
uneq1d |
|- ( ph -> ( ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) u. ( ( LSpan ` U ) ` { v } ) ) = ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) |
38 |
37
|
fveq2d |
|- ( ph -> ( ( LSpan ` U ) ` ( ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) u. ( ( LSpan ` U ) ` { v } ) ) ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ( LSpan ` U ) ` ( ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) u. ( ( LSpan ` U ) ` { v } ) ) ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
40 |
9
|
adantr |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> U e. LMod ) |
41 |
8 11
|
lssss |
|- ( ( ._|_ ` Q ) e. ( LSubSp ` U ) -> ( ._|_ ` Q ) C_ ( Base ` U ) ) |
42 |
13 41
|
syl |
|- ( ph -> ( ._|_ ` Q ) C_ ( Base ` U ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ._|_ ` Q ) C_ ( Base ` U ) ) |
44 |
32
|
snssd |
|- ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) -> { v } C_ ( Base ` U ) ) |
45 |
44
|
adantr |
|- ( ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> { v } C_ ( Base ` U ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> { v } C_ ( Base ` U ) ) |
47 |
8 28
|
lspun |
|- ( ( U e. LMod /\ ( ._|_ ` Q ) C_ ( Base ` U ) /\ { v } C_ ( Base ` U ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( ( LSpan ` U ) ` ( ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
48 |
40 43 46 47
|
syl3anc |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( ( LSpan ` U ) ` ( ( ( LSpan ` U ) ` ( ._|_ ` Q ) ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
49 |
|
uneq2 |
|- ( Q = ( ( LSpan ` U ) ` { v } ) -> ( ( ._|_ ` Q ) u. Q ) = ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) |
50 |
49
|
fveq2d |
|- ( Q = ( ( LSpan ` U ) ` { v } ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
51 |
50
|
adantl |
|- ( ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. ( ( LSpan ` U ) ` { v } ) ) ) ) |
53 |
39 48 52
|
3eqtr4d |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) ) |
54 |
|
eqid |
|- ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W ) |
55 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
56 |
1 19 2 8 3
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Q C_ ( Base ` U ) ) -> ( ._|_ ` Q ) e. ran ( ( DIsoH ` K ) ` W ) ) |
57 |
6 10 56
|
syl2anc |
|- ( ph -> ( ._|_ ` Q ) e. ran ( ( DIsoH ` K ) ` W ) ) |
58 |
1 19 54 2 55 4 6 57 7
|
dihjat2 |
|- ( ph -> ( ( ._|_ ` Q ) ( ( joinH ` K ) ` W ) Q ) = ( ( ._|_ ` Q ) ( LSSum ` U ) Q ) ) |
59 |
1 2 8 54 6 42 10
|
djhcom |
|- ( ph -> ( ( ._|_ ` Q ) ( ( joinH ` K ) ` W ) Q ) = ( Q ( ( joinH ` K ) ` W ) ( ._|_ ` Q ) ) ) |
60 |
11 4 9 7
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` U ) ) |
61 |
11 28 55
|
lsmsp |
|- ( ( U e. LMod /\ ( ._|_ ` Q ) e. ( LSubSp ` U ) /\ Q e. ( LSubSp ` U ) ) -> ( ( ._|_ ` Q ) ( LSSum ` U ) Q ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) ) |
62 |
9 13 60 61
|
syl3anc |
|- ( ph -> ( ( ._|_ ` Q ) ( LSSum ` U ) Q ) = ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) ) |
63 |
58 59 62
|
3eqtr3rd |
|- ( ph -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) = ( Q ( ( joinH ` K ) ` W ) ( ._|_ ` Q ) ) ) |
64 |
1 2 8 3 54
|
djhexmid |
|- ( ( ( K e. HL /\ W e. H ) /\ Q C_ ( Base ` U ) ) -> ( Q ( ( joinH ` K ) ` W ) ( ._|_ ` Q ) ) = ( Base ` U ) ) |
65 |
6 10 64
|
syl2anc |
|- ( ph -> ( Q ( ( joinH ` K ) ` W ) ( ._|_ ` Q ) ) = ( Base ` U ) ) |
66 |
63 65
|
eqtrd |
|- ( ph -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) = ( Base ` U ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. Q ) ) = ( Base ` U ) ) |
68 |
53 67
|
eqtrd |
|- ( ( ph /\ ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) |
69 |
68
|
ex |
|- ( ph -> ( ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) ) |
70 |
34 69
|
jcad |
|- ( ph -> ( ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) /\ Q = ( ( LSpan ` U ) ` { v } ) ) -> ( v e. ( Base ` U ) /\ ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) ) ) |
71 |
70
|
reximdv2 |
|- ( ph -> ( E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) -> E. v e. ( Base ` U ) ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) ) |
72 |
31 71
|
mpd |
|- ( ph -> E. v e. ( Base ` U ) ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) |
73 |
1 2 6
|
dvhlvec |
|- ( ph -> U e. LVec ) |
74 |
8 28 11 5
|
islshp |
|- ( U e. LVec -> ( ( ._|_ ` Q ) e. Y <-> ( ( ._|_ ` Q ) e. ( LSubSp ` U ) /\ ( ._|_ ` Q ) =/= ( Base ` U ) /\ E. v e. ( Base ` U ) ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) ) ) |
75 |
73 74
|
syl |
|- ( ph -> ( ( ._|_ ` Q ) e. Y <-> ( ( ._|_ ` Q ) e. ( LSubSp ` U ) /\ ( ._|_ ` Q ) =/= ( Base ` U ) /\ E. v e. ( Base ` U ) ( ( LSpan ` U ) ` ( ( ._|_ ` Q ) u. { v } ) ) = ( Base ` U ) ) ) ) |
76 |
13 27 72 75
|
mpbir3and |
|- ( ph -> ( ._|_ ` Q ) e. Y ) |