Step |
Hyp |
Ref |
Expression |
1 |
|
dochsatshp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochsatshp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochsatshp.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochsatshp.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
dochsatshp.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
6 |
|
dochsatshp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dochsatshp.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
9 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
10 |
8 4 9 7
|
lsatssv |
⊢ ( 𝜑 → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
11 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
12 |
1 2 8 11 3
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
13 |
6 10 12
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
15 |
14 4 9 7
|
lsatn0 |
⊢ ( 𝜑 → 𝑄 ≠ { ( 0g ‘ 𝑈 ) } ) |
16 |
1 2 3 8 14
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = ( Base ‘ 𝑈 ) ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = ( Base ‘ 𝑈 ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ↔ ( ⊥ ‘ 𝑄 ) = ( Base ‘ 𝑈 ) ) ) |
19 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
1 2 19 4
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
6 7 20
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
22 |
1 19 2 14
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { ( 0g ‘ 𝑈 ) } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
23 |
6 22
|
syl |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
1 19 3 6 21 23
|
doch11 |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ↔ 𝑄 = { ( 0g ‘ 𝑈 ) } ) ) |
25 |
18 24
|
bitr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) = ( Base ‘ 𝑈 ) ↔ 𝑄 = { ( 0g ‘ 𝑈 ) } ) ) |
26 |
25
|
necon3bid |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) ≠ ( Base ‘ 𝑈 ) ↔ 𝑄 ≠ { ( 0g ‘ 𝑈 ) } ) ) |
27 |
15 26
|
mpbird |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ≠ ( Base ‘ 𝑈 ) ) |
28 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
29 |
8 28 14 4
|
islsat |
⊢ ( 𝑈 ∈ LMod → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
30 |
9 29
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
31 |
7 30
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
32 |
|
eldifi |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
34 |
33
|
a1i |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) ) |
35 |
11 28
|
lspid |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) = ( ⊥ ‘ 𝑄 ) ) |
36 |
9 13 35
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) = ( ⊥ ‘ 𝑄 ) ) |
37 |
36
|
uneq1d |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
40 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → 𝑈 ∈ LMod ) |
41 |
8 11
|
lssss |
⊢ ( ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
42 |
13 41
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
44 |
32
|
snssd |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) ) |
47 |
8 28
|
lspun |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ∧ { 𝑣 } ⊆ ( Base ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
48 |
40 43 46 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ( LSpan ‘ 𝑈 ) ‘ ( ⊥ ‘ 𝑄 ) ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
49 |
|
uneq2 |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) = ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
50 |
49
|
fveq2d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
53 |
39 48 52
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) ) |
54 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
55 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
56 |
1 19 2 8 3
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
57 |
6 10 56
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
58 |
1 19 54 2 55 4 6 57 7
|
dihjat2 |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝑄 ) = ( ( ⊥ ‘ 𝑄 ) ( LSSum ‘ 𝑈 ) 𝑄 ) ) |
59 |
1 2 8 54 6 42 10
|
djhcom |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝑄 ) = ( 𝑄 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ 𝑄 ) ) ) |
60 |
11 4 9 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑈 ) ) |
61 |
11 28 55
|
lsmsp |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ 𝑄 ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( ⊥ ‘ 𝑄 ) ( LSSum ‘ 𝑈 ) 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) ) |
62 |
9 13 60 61
|
syl3anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) ( LSSum ‘ 𝑈 ) 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) ) |
63 |
58 59 62
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) = ( 𝑄 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ 𝑄 ) ) ) |
64 |
1 2 8 3 54
|
djhexmid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑄 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ 𝑄 ) ) = ( Base ‘ 𝑈 ) ) |
65 |
6 10 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ 𝑄 ) ) = ( Base ‘ 𝑈 ) ) |
66 |
63 65
|
eqtrd |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) = ( Base ‘ 𝑈 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ 𝑄 ) ) = ( Base ‘ 𝑈 ) ) |
68 |
53 67
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) |
69 |
68
|
ex |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) → ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) ) |
70 |
34 69
|
jcad |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) → ( 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) ) ) |
71 |
70
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ∃ 𝑣 ∈ ( Base ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) ) |
72 |
31 71
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( Base ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) |
73 |
1 2 6
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
74 |
8 28 11 5
|
islshp |
⊢ ( 𝑈 ∈ LVec → ( ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ↔ ( ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( ⊥ ‘ 𝑄 ) ≠ ( Base ‘ 𝑈 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) ) ) |
75 |
73 74
|
syl |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ↔ ( ( ⊥ ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( ⊥ ‘ 𝑄 ) ≠ ( Base ‘ 𝑈 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ ( ( ⊥ ‘ 𝑄 ) ∪ { 𝑣 } ) ) = ( Base ‘ 𝑈 ) ) ) ) |
76 |
13 27 72 75
|
mpbir3and |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) |