| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsatshpb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochsatshpb.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochsatshpb.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochsatshpb.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 5 |
|
dochsatshpb.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 6 |
|
dochsatshpb.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
| 7 |
|
dochsatshpb.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dochsatshpb.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
| 11 |
1 3 2 5 6 9 10
|
dochsatshp |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 13 |
12 4
|
lssss |
⊢ ( 𝑄 ∈ 𝑆 → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
| 14 |
8 13
|
syl |
⊢ ( 𝜑 → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
| 15 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
1 15 3 12 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
7 14 16
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
1 15 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( ⊥ ‘ 𝑄 ) ) |
| 19 |
7 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( ⊥ ‘ 𝑄 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( ⊥ ‘ 𝑄 ) ) |
| 21 |
1 3 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → 𝑈 ∈ LMod ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) |
| 24 |
12 6 22 23
|
lshpne |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ 𝑄 ) ≠ ( Base ‘ 𝑈 ) ) |
| 25 |
20 24
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ≠ ( Base ‘ 𝑈 ) ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 27 |
1 3 12 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 28 |
7 14 27
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 29 |
1 2 3 12 26 7 28
|
dochn0nv |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ≠ ( Base ‘ 𝑈 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ≠ ( Base ‘ 𝑈 ) ) ) |
| 31 |
25 30
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } ) |
| 32 |
1 3 12 4 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ∈ 𝑆 ) |
| 33 |
7 14 32
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ∈ 𝑆 ) |
| 34 |
12 4
|
lssss |
⊢ ( ( ⊥ ‘ 𝑄 ) ∈ 𝑆 → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 36 |
1 3 12 4 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ) |
| 37 |
7 35 36
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ) |
| 39 |
26 4
|
lssne0 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ∃ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) 𝑣 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ∃ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) 𝑣 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 41 |
31 40
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ∃ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) 𝑣 ≠ ( 0g ‘ 𝑈 ) ) |
| 42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 44 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 46 |
43 45 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( ⊥ ‘ 𝑄 ) ) |
| 47 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 48 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
| 49 |
38
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ) |
| 50 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 51 |
4 47 48 49 50
|
ellspsn5 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 52 |
12 4
|
lssel |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
| 53 |
49 50 52
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
| 54 |
1 3 12 47 15
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( Base ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 55 |
43 53 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 56 |
1 15 3 12 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 57 |
7 35 56
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 59 |
58
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 60 |
1 15 2 43 55 59
|
dochord |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
| 61 |
51 60
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 62 |
46 61
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 63 |
1 3 7
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → 𝑈 ∈ LVec ) |
| 65 |
64
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LVec ) |
| 66 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) |
| 67 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → 𝑣 ≠ ( 0g ‘ 𝑈 ) ) |
| 68 |
12 47 26 5
|
lsatlspsn2 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ∈ 𝐴 ) |
| 69 |
48 53 67 68
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ∈ 𝐴 ) |
| 70 |
1 3 2 5 6 43 69
|
dochsatshp |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ∈ 𝑌 ) |
| 71 |
6 65 66 70
|
lshpcmp |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ⊥ ‘ 𝑄 ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( ⊥ ‘ 𝑄 ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
| 72 |
62 71
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑄 ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
| 74 |
1 15 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
| 75 |
43 55 74
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
| 77 |
76 69
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ∧ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) |
| 78 |
77
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ∃ 𝑣 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) 𝑣 ≠ ( 0g ‘ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ) |
| 79 |
41 78
|
mpd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) |
| 80 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → 𝑄 ∈ 𝑆 ) |
| 81 |
1 2 3 4 5 42 80
|
dochsat |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴 ) ) |
| 82 |
79 81
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) → 𝑄 ∈ 𝐴 ) |
| 83 |
11 82
|
impbida |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ( ⊥ ‘ 𝑄 ) ∈ 𝑌 ) ) |