Step |
Hyp |
Ref |
Expression |
1 |
|
dochsat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochsat.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochsat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochsat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
dochsat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
6 |
|
dochsat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dochsat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
8 |
1 3 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑈 ∈ LMod ) |
10 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ∈ 𝑆 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
12 |
11 4
|
lss0ss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑄 ∈ 𝑆 ) → { ( 0g ‘ 𝑈 ) } ⊆ 𝑄 ) |
13 |
9 10 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → { ( 0g ‘ 𝑈 ) } ⊆ 𝑄 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) |
15 |
11 5 9 14
|
lsatn0 |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g ‘ 𝑈 ) } ) → 𝑄 = { ( 0g ‘ 𝑈 ) } ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g ‘ 𝑈 ) } ) → ( ⊥ ‘ 𝑄 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
18 |
17
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g ‘ 𝑈 ) } ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = ( ⊥ ‘ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) ) |
19 |
1 3 2 11 6
|
dochoc0 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) = { ( 0g ‘ 𝑈 ) } ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) = { ( 0g ‘ 𝑈 ) } ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g ‘ 𝑈 ) } ) → ( ⊥ ‘ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) = { ( 0g ‘ 𝑈 ) } ) |
22 |
18 21
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g ‘ 𝑈 ) } ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = { ( 0g ‘ 𝑈 ) } ) |
23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( 𝑄 = { ( 0g ‘ 𝑈 ) } → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = { ( 0g ‘ 𝑈 ) } ) ) |
24 |
23
|
necon3d |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ≠ { ( 0g ‘ 𝑈 ) } → 𝑄 ≠ { ( 0g ‘ 𝑈 ) } ) ) |
25 |
15 24
|
mpd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ≠ { ( 0g ‘ 𝑈 ) } ) |
26 |
25
|
necomd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → { ( 0g ‘ 𝑈 ) } ≠ 𝑄 ) |
27 |
|
df-pss |
⊢ ( { ( 0g ‘ 𝑈 ) } ⊊ 𝑄 ↔ ( { ( 0g ‘ 𝑈 ) } ⊆ 𝑄 ∧ { ( 0g ‘ 𝑈 ) } ≠ 𝑄 ) ) |
28 |
13 26 27
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → { ( 0g ‘ 𝑈 ) } ⊊ 𝑄 ) |
29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
31 |
30 4
|
lssss |
⊢ ( 𝑄 ∈ 𝑆 → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
32 |
7 31
|
syl |
⊢ ( 𝜑 → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
34 |
1 3 30 2
|
dochocss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → 𝑄 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) |
35 |
29 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) |
36 |
4 5 9 14
|
lsatlssel |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ) |
37 |
4
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
38 |
9 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
39 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
40 |
11 39
|
lsm02 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) → ( { ( 0g ‘ 𝑈 ) } ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) |
41 |
38 40
|
syl |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( { ( 0g ‘ 𝑈 ) } ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) |
42 |
35 41
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ⊆ ( { ( 0g ‘ 𝑈 ) } ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ) |
43 |
1 3 6
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑈 ∈ LVec ) |
45 |
11 4
|
lsssn0 |
⊢ ( 𝑈 ∈ LMod → { ( 0g ‘ 𝑈 ) } ∈ 𝑆 ) |
46 |
9 45
|
syl |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → { ( 0g ‘ 𝑈 ) } ∈ 𝑆 ) |
47 |
4 39 5 44 46 10 14
|
lsmsatcv |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) ∧ { ( 0g ‘ 𝑈 ) } ⊊ 𝑄 ∧ 𝑄 ⊆ ( { ( 0g ‘ 𝑈 ) } ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ) → 𝑄 = ( { ( 0g ‘ 𝑈 ) } ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ) |
48 |
28 42 47
|
mpd3an23 |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 = ( { ( 0g ‘ 𝑈 ) } ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ) ) |
49 |
48 41
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = 𝑄 ) |
50 |
49 14
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
51 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
52 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
53 |
1 3 52 5
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
54 |
6 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
55 |
1 52 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = 𝑄 ) |
56 |
51 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) = 𝑄 ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
58 |
56 57
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ) |
59 |
50 58
|
impbida |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑄 ) ) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴 ) ) |