Metamath Proof Explorer


Theorem dochsat

Description: The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochsat.h 𝐻 = ( LHyp ‘ 𝐾 )
dochsat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochsat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochsat.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochsat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochsat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochsat.q ( 𝜑𝑄𝑆 )
Assertion dochsat ( 𝜑 → ( ( ‘ ( 𝑄 ) ) ∈ 𝐴𝑄𝐴 ) )

Proof

Step Hyp Ref Expression
1 dochsat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochsat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochsat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochsat.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 dochsat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
6 dochsat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 dochsat.q ( 𝜑𝑄𝑆 )
8 1 3 6 dvhlmod ( 𝜑𝑈 ∈ LMod )
9 8 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑈 ∈ LMod )
10 7 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄𝑆 )
11 eqid ( 0g𝑈 ) = ( 0g𝑈 )
12 11 4 lss0ss ( ( 𝑈 ∈ LMod ∧ 𝑄𝑆 ) → { ( 0g𝑈 ) } ⊆ 𝑄 )
13 9 10 12 syl2anc ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → { ( 0g𝑈 ) } ⊆ 𝑄 )
14 simpr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ‘ ( 𝑄 ) ) ∈ 𝐴 )
15 11 5 9 14 lsatn0 ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ‘ ( 𝑄 ) ) ≠ { ( 0g𝑈 ) } )
16 simpr ( ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g𝑈 ) } ) → 𝑄 = { ( 0g𝑈 ) } )
17 16 fveq2d ( ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g𝑈 ) } ) → ( 𝑄 ) = ( ‘ { ( 0g𝑈 ) } ) )
18 17 fveq2d ( ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g𝑈 ) } ) → ( ‘ ( 𝑄 ) ) = ( ‘ ( ‘ { ( 0g𝑈 ) } ) ) )
19 1 3 2 11 6 dochoc0 ( 𝜑 → ( ‘ ( ‘ { ( 0g𝑈 ) } ) ) = { ( 0g𝑈 ) } )
20 19 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ‘ ( ‘ { ( 0g𝑈 ) } ) ) = { ( 0g𝑈 ) } )
21 20 adantr ( ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g𝑈 ) } ) → ( ‘ ( ‘ { ( 0g𝑈 ) } ) ) = { ( 0g𝑈 ) } )
22 18 21 eqtrd ( ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) ∧ 𝑄 = { ( 0g𝑈 ) } ) → ( ‘ ( 𝑄 ) ) = { ( 0g𝑈 ) } )
23 22 ex ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( 𝑄 = { ( 0g𝑈 ) } → ( ‘ ( 𝑄 ) ) = { ( 0g𝑈 ) } ) )
24 23 necon3d ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ( ‘ ( 𝑄 ) ) ≠ { ( 0g𝑈 ) } → 𝑄 ≠ { ( 0g𝑈 ) } ) )
25 15 24 mpd ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ≠ { ( 0g𝑈 ) } )
26 25 necomd ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → { ( 0g𝑈 ) } ≠ 𝑄 )
27 df-pss ( { ( 0g𝑈 ) } ⊊ 𝑄 ↔ ( { ( 0g𝑈 ) } ⊆ 𝑄 ∧ { ( 0g𝑈 ) } ≠ 𝑄 ) )
28 13 26 27 sylanbrc ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → { ( 0g𝑈 ) } ⊊ 𝑄 )
29 6 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
30 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
31 30 4 lssss ( 𝑄𝑆𝑄 ⊆ ( Base ‘ 𝑈 ) )
32 7 31 syl ( 𝜑𝑄 ⊆ ( Base ‘ 𝑈 ) )
33 32 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ⊆ ( Base ‘ 𝑈 ) )
34 1 3 30 2 dochocss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄 ⊆ ( Base ‘ 𝑈 ) ) → 𝑄 ⊆ ( ‘ ( 𝑄 ) ) )
35 29 33 34 syl2anc ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ⊆ ( ‘ ( 𝑄 ) ) )
36 4 5 9 14 lsatlssel ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ‘ ( 𝑄 ) ) ∈ 𝑆 )
37 4 lsssubg ( ( 𝑈 ∈ LMod ∧ ( ‘ ( 𝑄 ) ) ∈ 𝑆 ) → ( ‘ ( 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
38 9 36 37 syl2anc ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ‘ ( 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
39 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
40 11 39 lsm02 ( ( ‘ ( 𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) → ( { ( 0g𝑈 ) } ( LSSum ‘ 𝑈 ) ( ‘ ( 𝑄 ) ) ) = ( ‘ ( 𝑄 ) ) )
41 38 40 syl ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( { ( 0g𝑈 ) } ( LSSum ‘ 𝑈 ) ( ‘ ( 𝑄 ) ) ) = ( ‘ ( 𝑄 ) ) )
42 35 41 sseqtrrd ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄 ⊆ ( { ( 0g𝑈 ) } ( LSSum ‘ 𝑈 ) ( ‘ ( 𝑄 ) ) ) )
43 1 3 6 dvhlvec ( 𝜑𝑈 ∈ LVec )
44 43 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑈 ∈ LVec )
45 11 4 lsssn0 ( 𝑈 ∈ LMod → { ( 0g𝑈 ) } ∈ 𝑆 )
46 9 45 syl ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → { ( 0g𝑈 ) } ∈ 𝑆 )
47 4 39 5 44 46 10 14 lsmsatcv ( ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) ∧ { ( 0g𝑈 ) } ⊊ 𝑄𝑄 ⊆ ( { ( 0g𝑈 ) } ( LSSum ‘ 𝑈 ) ( ‘ ( 𝑄 ) ) ) ) → 𝑄 = ( { ( 0g𝑈 ) } ( LSSum ‘ 𝑈 ) ( ‘ ( 𝑄 ) ) ) )
48 28 42 47 mpd3an23 ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄 = ( { ( 0g𝑈 ) } ( LSSum ‘ 𝑈 ) ( ‘ ( 𝑄 ) ) ) )
49 48 41 eqtr2d ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → ( ‘ ( 𝑄 ) ) = 𝑄 )
50 49 14 eqeltrrd ( ( 𝜑 ∧ ( ‘ ( 𝑄 ) ) ∈ 𝐴 ) → 𝑄𝐴 )
51 6 adantr ( ( 𝜑𝑄𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
52 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
53 1 3 52 5 dih1dimat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) → 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
54 6 53 sylan ( ( 𝜑𝑄𝐴 ) → 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
55 1 52 2 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ‘ ( 𝑄 ) ) = 𝑄 )
56 51 54 55 syl2anc ( ( 𝜑𝑄𝐴 ) → ( ‘ ( 𝑄 ) ) = 𝑄 )
57 simpr ( ( 𝜑𝑄𝐴 ) → 𝑄𝐴 )
58 56 57 eqeltrd ( ( 𝜑𝑄𝐴 ) → ( ‘ ( 𝑄 ) ) ∈ 𝐴 )
59 50 58 impbida ( 𝜑 → ( ( ‘ ( 𝑄 ) ) ∈ 𝐴𝑄𝐴 ) )