Metamath Proof Explorer


Theorem dochsat

Description: The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochsat.h H=LHypK
dochsat.o ˙=ocHKW
dochsat.u U=DVecHKW
dochsat.s S=LSubSpU
dochsat.a A=LSAtomsU
dochsat.k φKHLWH
dochsat.q φQS
Assertion dochsat φ˙˙QAQA

Proof

Step Hyp Ref Expression
1 dochsat.h H=LHypK
2 dochsat.o ˙=ocHKW
3 dochsat.u U=DVecHKW
4 dochsat.s S=LSubSpU
5 dochsat.a A=LSAtomsU
6 dochsat.k φKHLWH
7 dochsat.q φQS
8 1 3 6 dvhlmod φULMod
9 8 adantr φ˙˙QAULMod
10 7 adantr φ˙˙QAQS
11 eqid 0U=0U
12 11 4 lss0ss ULModQS0UQ
13 9 10 12 syl2anc φ˙˙QA0UQ
14 simpr φ˙˙QA˙˙QA
15 11 5 9 14 lsatn0 φ˙˙QA˙˙Q0U
16 simpr φ˙˙QAQ=0UQ=0U
17 16 fveq2d φ˙˙QAQ=0U˙Q=˙0U
18 17 fveq2d φ˙˙QAQ=0U˙˙Q=˙˙0U
19 1 3 2 11 6 dochoc0 φ˙˙0U=0U
20 19 adantr φ˙˙QA˙˙0U=0U
21 20 adantr φ˙˙QAQ=0U˙˙0U=0U
22 18 21 eqtrd φ˙˙QAQ=0U˙˙Q=0U
23 22 ex φ˙˙QAQ=0U˙˙Q=0U
24 23 necon3d φ˙˙QA˙˙Q0UQ0U
25 15 24 mpd φ˙˙QAQ0U
26 25 necomd φ˙˙QA0UQ
27 df-pss 0UQ0UQ0UQ
28 13 26 27 sylanbrc φ˙˙QA0UQ
29 6 adantr φ˙˙QAKHLWH
30 eqid BaseU=BaseU
31 30 4 lssss QSQBaseU
32 7 31 syl φQBaseU
33 32 adantr φ˙˙QAQBaseU
34 1 3 30 2 dochocss KHLWHQBaseUQ˙˙Q
35 29 33 34 syl2anc φ˙˙QAQ˙˙Q
36 4 5 9 14 lsatlssel φ˙˙QA˙˙QS
37 4 lsssubg ULMod˙˙QS˙˙QSubGrpU
38 9 36 37 syl2anc φ˙˙QA˙˙QSubGrpU
39 eqid LSSumU=LSSumU
40 11 39 lsm02 ˙˙QSubGrpU0ULSSumU˙˙Q=˙˙Q
41 38 40 syl φ˙˙QA0ULSSumU˙˙Q=˙˙Q
42 35 41 sseqtrrd φ˙˙QAQ0ULSSumU˙˙Q
43 1 3 6 dvhlvec φULVec
44 43 adantr φ˙˙QAULVec
45 11 4 lsssn0 ULMod0US
46 9 45 syl φ˙˙QA0US
47 4 39 5 44 46 10 14 lsmsatcv φ˙˙QA0UQQ0ULSSumU˙˙QQ=0ULSSumU˙˙Q
48 28 42 47 mpd3an23 φ˙˙QAQ=0ULSSumU˙˙Q
49 48 41 eqtr2d φ˙˙QA˙˙Q=Q
50 49 14 eqeltrrd φ˙˙QAQA
51 6 adantr φQAKHLWH
52 eqid DIsoHKW=DIsoHKW
53 1 3 52 5 dih1dimat KHLWHQAQranDIsoHKW
54 6 53 sylan φQAQranDIsoHKW
55 1 52 2 dochoc KHLWHQranDIsoHKW˙˙Q=Q
56 51 54 55 syl2anc φQA˙˙Q=Q
57 simpr φQAQA
58 56 57 eqeltrd φQA˙˙QA
59 50 58 impbida φ˙˙QAQA