Metamath Proof Explorer


Theorem lsmsatcv

Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of Kalmbach p. 153. ( spansncvi analog.) Explicit atom version of lsmcv . (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses lsmsatcv.s S=LSubSpW
lsmsatcv.p ˙=LSSumW
lsmsatcv.a A=LSAtomsW
lsmsatcv.w φWLVec
lsmsatcv.t φTS
lsmsatcv.u φUS
lsmsatcv.x φQA
Assertion lsmsatcv φTUUT˙QU=T˙Q

Proof

Step Hyp Ref Expression
1 lsmsatcv.s S=LSubSpW
2 lsmsatcv.p ˙=LSSumW
3 lsmsatcv.a A=LSAtomsW
4 lsmsatcv.w φWLVec
5 lsmsatcv.t φTS
6 lsmsatcv.u φUS
7 lsmsatcv.x φQA
8 eqid BaseW=BaseW
9 eqid LSpanW=LSpanW
10 8 9 3 islsati WLVecQAvBaseWQ=LSpanWv
11 4 7 10 syl2anc φvBaseWQ=LSpanWv
12 4 adantr φvBaseWWLVec
13 5 adantr φvBaseWTS
14 6 adantr φvBaseWUS
15 simpr φvBaseWvBaseW
16 8 1 9 2 12 13 14 15 lsmcv φvBaseWTUUT˙LSpanWvU=T˙LSpanWv
17 16 3expib φvBaseWTUUT˙LSpanWvU=T˙LSpanWv
18 17 3adant3 φvBaseWQ=LSpanWvTUUT˙LSpanWvU=T˙LSpanWv
19 oveq2 Q=LSpanWvT˙Q=T˙LSpanWv
20 19 sseq2d Q=LSpanWvUT˙QUT˙LSpanWv
21 20 anbi2d Q=LSpanWvTUUT˙QTUUT˙LSpanWv
22 19 eqeq2d Q=LSpanWvU=T˙QU=T˙LSpanWv
23 21 22 imbi12d Q=LSpanWvTUUT˙QU=T˙QTUUT˙LSpanWvU=T˙LSpanWv
24 23 3ad2ant3 φvBaseWQ=LSpanWvTUUT˙QU=T˙QTUUT˙LSpanWvU=T˙LSpanWv
25 18 24 mpbird φvBaseWQ=LSpanWvTUUT˙QU=T˙Q
26 25 rexlimdv3a φvBaseWQ=LSpanWvTUUT˙QU=T˙Q
27 11 26 mpd φTUUT˙QU=T˙Q
28 27 3impib φTUUT˙QU=T˙Q