| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsatcv.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lsmsatcv.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lsmsatcv.a |
|- A = ( LSAtoms ` W ) |
| 4 |
|
lsmsatcv.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
lsmsatcv.t |
|- ( ph -> T e. S ) |
| 6 |
|
lsmsatcv.u |
|- ( ph -> U e. S ) |
| 7 |
|
lsmsatcv.x |
|- ( ph -> Q e. A ) |
| 8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 9 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 10 |
8 9 3
|
islsati |
|- ( ( W e. LVec /\ Q e. A ) -> E. v e. ( Base ` W ) Q = ( ( LSpan ` W ) ` { v } ) ) |
| 11 |
4 7 10
|
syl2anc |
|- ( ph -> E. v e. ( Base ` W ) Q = ( ( LSpan ` W ) ` { v } ) ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> W e. LVec ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> T e. S ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> U e. S ) |
| 15 |
|
simpr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> v e. ( Base ` W ) ) |
| 16 |
8 1 9 2 12 13 14 15
|
lsmcv |
|- ( ( ( ph /\ v e. ( Base ` W ) ) /\ T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) |
| 17 |
16
|
3expib |
|- ( ( ph /\ v e. ( Base ` W ) ) -> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
| 18 |
17
|
3adant3 |
|- ( ( ph /\ v e. ( Base ` W ) /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
| 19 |
|
oveq2 |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( T .(+) Q ) = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) |
| 20 |
19
|
sseq2d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( U C_ ( T .(+) Q ) <-> U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
| 21 |
20
|
anbi2d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) <-> ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) ) |
| 22 |
19
|
eqeq2d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( U = ( T .(+) Q ) <-> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
| 23 |
21 22
|
imbi12d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) <-> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) ) |
| 24 |
23
|
3ad2ant3 |
|- ( ( ph /\ v e. ( Base ` W ) /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) <-> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) ) |
| 25 |
18 24
|
mpbird |
|- ( ( ph /\ v e. ( Base ` W ) /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) ) |
| 26 |
25
|
rexlimdv3a |
|- ( ph -> ( E. v e. ( Base ` W ) Q = ( ( LSpan ` W ) ` { v } ) -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) ) ) |
| 27 |
11 26
|
mpd |
|- ( ph -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) ) |
| 28 |
27
|
3impib |
|- ( ( ph /\ T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) |