Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsatcv.s |
|- S = ( LSubSp ` W ) |
2 |
|
lsmsatcv.p |
|- .(+) = ( LSSum ` W ) |
3 |
|
lsmsatcv.a |
|- A = ( LSAtoms ` W ) |
4 |
|
lsmsatcv.w |
|- ( ph -> W e. LVec ) |
5 |
|
lsmsatcv.t |
|- ( ph -> T e. S ) |
6 |
|
lsmsatcv.u |
|- ( ph -> U e. S ) |
7 |
|
lsmsatcv.x |
|- ( ph -> Q e. A ) |
8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
9 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
10 |
8 9 3
|
islsati |
|- ( ( W e. LVec /\ Q e. A ) -> E. v e. ( Base ` W ) Q = ( ( LSpan ` W ) ` { v } ) ) |
11 |
4 7 10
|
syl2anc |
|- ( ph -> E. v e. ( Base ` W ) Q = ( ( LSpan ` W ) ` { v } ) ) |
12 |
4
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> W e. LVec ) |
13 |
5
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> T e. S ) |
14 |
6
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> U e. S ) |
15 |
|
simpr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> v e. ( Base ` W ) ) |
16 |
8 1 9 2 12 13 14 15
|
lsmcv |
|- ( ( ( ph /\ v e. ( Base ` W ) ) /\ T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) |
17 |
16
|
3expib |
|- ( ( ph /\ v e. ( Base ` W ) ) -> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
18 |
17
|
3adant3 |
|- ( ( ph /\ v e. ( Base ` W ) /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
19 |
|
oveq2 |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( T .(+) Q ) = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) |
20 |
19
|
sseq2d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( U C_ ( T .(+) Q ) <-> U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
21 |
20
|
anbi2d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) <-> ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) ) |
22 |
19
|
eqeq2d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( U = ( T .(+) Q ) <-> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) |
23 |
21 22
|
imbi12d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) <-> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) ) |
24 |
23
|
3ad2ant3 |
|- ( ( ph /\ v e. ( Base ` W ) /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) <-> ( ( T C. U /\ U C_ ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T .(+) ( ( LSpan ` W ) ` { v } ) ) ) ) ) |
25 |
18 24
|
mpbird |
|- ( ( ph /\ v e. ( Base ` W ) /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) ) |
26 |
25
|
rexlimdv3a |
|- ( ph -> ( E. v e. ( Base ` W ) Q = ( ( LSpan ` W ) ` { v } ) -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) ) ) |
27 |
11 26
|
mpd |
|- ( ph -> ( ( T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) ) |
28 |
27
|
3impib |
|- ( ( ph /\ T C. U /\ U C_ ( T .(+) Q ) ) -> U = ( T .(+) Q ) ) |