Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsatcv.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lsmsatcv.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
lsmsatcv.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lsmsatcv.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lsmsatcv.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
6 |
|
lsmsatcv.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
|
lsmsatcv.x |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
10 |
8 9 3
|
islsati |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
11 |
4 7 10
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LVec ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑇 ∈ 𝑆 ) |
14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑈 ∈ 𝑆 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
16 |
8 1 9 2 12 13 14 15
|
lsmcv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
17 |
16
|
3expib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
18 |
17
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 ⊕ 𝑄 ) = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
20 |
19
|
sseq2d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ↔ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) ↔ ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) ) |
22 |
19
|
eqeq2d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 = ( 𝑇 ⊕ 𝑄 ) ↔ 𝑈 = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
23 |
21 22
|
imbi12d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) → 𝑈 = ( 𝑇 ⊕ 𝑄 ) ) ↔ ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) → 𝑈 = ( 𝑇 ⊕ 𝑄 ) ) ↔ ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) ) |
25 |
18 24
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) → 𝑈 = ( 𝑇 ⊕ 𝑄 ) ) ) |
26 |
25
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) → 𝑈 = ( 𝑇 ⊕ 𝑄 ) ) ) ) |
27 |
11 26
|
mpd |
⊢ ( 𝜑 → ( ( 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) → 𝑈 = ( 𝑇 ⊕ 𝑄 ) ) ) |
28 |
27
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ 𝑄 ) ) → 𝑈 = ( 𝑇 ⊕ 𝑄 ) ) |