Metamath Proof Explorer


Theorem lsmsatcv

Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of Kalmbach p. 153. ( spansncvi analog.) Explicit atom version of lsmcv . (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses lsmsatcv.s 𝑆 = ( LSubSp ‘ 𝑊 )
lsmsatcv.p = ( LSSum ‘ 𝑊 )
lsmsatcv.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsmsatcv.w ( 𝜑𝑊 ∈ LVec )
lsmsatcv.t ( 𝜑𝑇𝑆 )
lsmsatcv.u ( 𝜑𝑈𝑆 )
lsmsatcv.x ( 𝜑𝑄𝐴 )
Assertion lsmsatcv ( ( 𝜑𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) )

Proof

Step Hyp Ref Expression
1 lsmsatcv.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lsmsatcv.p = ( LSSum ‘ 𝑊 )
3 lsmsatcv.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lsmsatcv.w ( 𝜑𝑊 ∈ LVec )
5 lsmsatcv.t ( 𝜑𝑇𝑆 )
6 lsmsatcv.u ( 𝜑𝑈𝑆 )
7 lsmsatcv.x ( 𝜑𝑄𝐴 )
8 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
9 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
10 8 9 3 islsati ( ( 𝑊 ∈ LVec ∧ 𝑄𝐴 ) → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) )
11 4 7 10 syl2anc ( 𝜑 → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) )
12 4 adantr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LVec )
13 5 adantr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑇𝑆 )
14 6 adantr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑈𝑆 )
15 simpr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) )
16 8 1 9 2 12 13 14 15 lsmcv ( ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑇𝑈𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) )
17 16 3expib ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) )
18 17 3adant3 ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) )
19 oveq2 ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 𝑄 ) = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) )
20 19 sseq2d ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 ⊆ ( 𝑇 𝑄 ) ↔ 𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) )
21 20 anbi2d ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) ↔ ( 𝑇𝑈𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) )
22 19 eqeq2d ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 = ( 𝑇 𝑄 ) ↔ 𝑈 = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) )
23 21 22 imbi12d ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) ) ↔ ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) )
24 23 3ad2ant3 ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) ) ↔ ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) )
25 18 24 mpbird ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) ) )
26 25 rexlimdv3a ( 𝜑 → ( ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) ) ) )
27 11 26 mpd ( 𝜑 → ( ( 𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) ) )
28 27 3impib ( ( 𝜑𝑇𝑈𝑈 ⊆ ( 𝑇 𝑄 ) ) → 𝑈 = ( 𝑇 𝑄 ) )