Step |
Hyp |
Ref |
Expression |
1 |
|
lssatomic.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lssatomic.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lssatomic.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lssatomic.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
lssatomic.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lssatomic.n |
⊢ ( 𝜑 → 𝑈 ≠ { 0 } ) |
7 |
2 1
|
lssne0 |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑈 ≠ { 0 } ↔ ∃ 𝑥 ∈ 𝑈 𝑥 ≠ 0 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝑈 ≠ { 0 } ↔ ∃ 𝑥 ∈ 𝑈 𝑥 ≠ 0 ) ) |
9 |
6 8
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑈 𝑥 ≠ 0 ) |
10 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑊 ∈ LMod ) |
11 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑈 ∈ 𝑆 ) |
12 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝑈 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
14 |
13 1
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
15 |
11 12 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
16 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) |
17 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
18 |
13 17 2 3
|
lsatlspsn2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝐴 ) |
19 |
10 15 16 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝐴 ) |
20 |
1 17 10 11 12
|
lspsnel5a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) |
21 |
|
sseq1 |
⊢ ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( 𝑞 ⊆ 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) |
22 |
21
|
rspcev |
⊢ ( ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝐴 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈 ) |
23 |
19 20 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈 ) |
24 |
23
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑈 𝑥 ≠ 0 → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈 ) ) |
25 |
9 24
|
mpd |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈 ) |