Metamath Proof Explorer


Theorem lssatomic

Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. ( shatomici analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lssatomic.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssatomic.o 0 = ( 0g𝑊 )
lssatomic.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lssatomic.w ( 𝜑𝑊 ∈ LMod )
lssatomic.u ( 𝜑𝑈𝑆 )
lssatomic.n ( 𝜑𝑈 ≠ { 0 } )
Assertion lssatomic ( 𝜑 → ∃ 𝑞𝐴 𝑞𝑈 )

Proof

Step Hyp Ref Expression
1 lssatomic.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lssatomic.o 0 = ( 0g𝑊 )
3 lssatomic.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lssatomic.w ( 𝜑𝑊 ∈ LMod )
5 lssatomic.u ( 𝜑𝑈𝑆 )
6 lssatomic.n ( 𝜑𝑈 ≠ { 0 } )
7 2 1 lssne0 ( 𝑈𝑆 → ( 𝑈 ≠ { 0 } ↔ ∃ 𝑥𝑈 𝑥0 ) )
8 5 7 syl ( 𝜑 → ( 𝑈 ≠ { 0 } ↔ ∃ 𝑥𝑈 𝑥0 ) )
9 6 8 mpbid ( 𝜑 → ∃ 𝑥𝑈 𝑥0 )
10 4 3ad2ant1 ( ( 𝜑𝑥𝑈𝑥0 ) → 𝑊 ∈ LMod )
11 5 3ad2ant1 ( ( 𝜑𝑥𝑈𝑥0 ) → 𝑈𝑆 )
12 simp2 ( ( 𝜑𝑥𝑈𝑥0 ) → 𝑥𝑈 )
13 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
14 13 1 lssel ( ( 𝑈𝑆𝑥𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
15 11 12 14 syl2anc ( ( 𝜑𝑥𝑈𝑥0 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
16 simp3 ( ( 𝜑𝑥𝑈𝑥0 ) → 𝑥0 )
17 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
18 13 17 2 3 lsatlspsn2 ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝐴 )
19 10 15 16 18 syl3anc ( ( 𝜑𝑥𝑈𝑥0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝐴 )
20 1 17 10 11 12 lspsnel5a ( ( 𝜑𝑥𝑈𝑥0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 )
21 sseq1 ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( 𝑞𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) )
22 21 rspcev ( ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝐴 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ∃ 𝑞𝐴 𝑞𝑈 )
23 19 20 22 syl2anc ( ( 𝜑𝑥𝑈𝑥0 ) → ∃ 𝑞𝐴 𝑞𝑈 )
24 23 rexlimdv3a ( 𝜑 → ( ∃ 𝑥𝑈 𝑥0 → ∃ 𝑞𝐴 𝑞𝑈 ) )
25 9 24 mpd ( 𝜑 → ∃ 𝑞𝐴 𝑞𝑈 )