Step |
Hyp |
Ref |
Expression |
1 |
|
shatomic.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
1
|
shne0i |
⊢ ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑦 ∈ 𝐴 𝑦 ≠ 0ℎ ) |
3 |
1
|
sheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
4 |
|
h1da |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ∈ HAtoms ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ∈ HAtoms ) |
6 |
|
sh1dle |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) |
7 |
1 6
|
mpan |
⊢ ( 𝑦 ∈ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) |
9 |
|
sseq1 |
⊢ ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) → ( 𝑥 ⊆ 𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) ) |
10 |
9
|
rspcev |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ∈ HAtoms ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |
11 |
5 8 10
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |
12 |
11
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑦 ≠ 0ℎ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |
13 |
2 12
|
sylbi |
⊢ ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |