Metamath Proof Explorer


Theorem lssatomic

Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. ( shatomici analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lssatomic.s S=LSubSpW
lssatomic.o 0˙=0W
lssatomic.a A=LSAtomsW
lssatomic.w φWLMod
lssatomic.u φUS
lssatomic.n φU0˙
Assertion lssatomic φqAqU

Proof

Step Hyp Ref Expression
1 lssatomic.s S=LSubSpW
2 lssatomic.o 0˙=0W
3 lssatomic.a A=LSAtomsW
4 lssatomic.w φWLMod
5 lssatomic.u φUS
6 lssatomic.n φU0˙
7 2 1 lssne0 USU0˙xUx0˙
8 5 7 syl φU0˙xUx0˙
9 6 8 mpbid φxUx0˙
10 4 3ad2ant1 φxUx0˙WLMod
11 5 3ad2ant1 φxUx0˙US
12 simp2 φxUx0˙xU
13 eqid BaseW=BaseW
14 13 1 lssel USxUxBaseW
15 11 12 14 syl2anc φxUx0˙xBaseW
16 simp3 φxUx0˙x0˙
17 eqid LSpanW=LSpanW
18 13 17 2 3 lsatlspsn2 WLModxBaseWx0˙LSpanWxA
19 10 15 16 18 syl3anc φxUx0˙LSpanWxA
20 1 17 10 11 12 lspsnel5a φxUx0˙LSpanWxU
21 sseq1 q=LSpanWxqULSpanWxU
22 21 rspcev LSpanWxALSpanWxUqAqU
23 19 20 22 syl2anc φxUx0˙qAqU
24 23 rexlimdv3a φxUx0˙qAqU
25 9 24 mpd φqAqU