Step |
Hyp |
Ref |
Expression |
1 |
|
lssatomic.s |
|- S = ( LSubSp ` W ) |
2 |
|
lssatomic.o |
|- .0. = ( 0g ` W ) |
3 |
|
lssatomic.a |
|- A = ( LSAtoms ` W ) |
4 |
|
lssatomic.w |
|- ( ph -> W e. LMod ) |
5 |
|
lssatomic.u |
|- ( ph -> U e. S ) |
6 |
|
lssatomic.n |
|- ( ph -> U =/= { .0. } ) |
7 |
2 1
|
lssne0 |
|- ( U e. S -> ( U =/= { .0. } <-> E. x e. U x =/= .0. ) ) |
8 |
5 7
|
syl |
|- ( ph -> ( U =/= { .0. } <-> E. x e. U x =/= .0. ) ) |
9 |
6 8
|
mpbid |
|- ( ph -> E. x e. U x =/= .0. ) |
10 |
4
|
3ad2ant1 |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> W e. LMod ) |
11 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> U e. S ) |
12 |
|
simp2 |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> x e. U ) |
13 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
14 |
13 1
|
lssel |
|- ( ( U e. S /\ x e. U ) -> x e. ( Base ` W ) ) |
15 |
11 12 14
|
syl2anc |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> x e. ( Base ` W ) ) |
16 |
|
simp3 |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> x =/= .0. ) |
17 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
18 |
13 17 2 3
|
lsatlspsn2 |
|- ( ( W e. LMod /\ x e. ( Base ` W ) /\ x =/= .0. ) -> ( ( LSpan ` W ) ` { x } ) e. A ) |
19 |
10 15 16 18
|
syl3anc |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> ( ( LSpan ` W ) ` { x } ) e. A ) |
20 |
1 17 10 11 12
|
lspsnel5a |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> ( ( LSpan ` W ) ` { x } ) C_ U ) |
21 |
|
sseq1 |
|- ( q = ( ( LSpan ` W ) ` { x } ) -> ( q C_ U <-> ( ( LSpan ` W ) ` { x } ) C_ U ) ) |
22 |
21
|
rspcev |
|- ( ( ( ( LSpan ` W ) ` { x } ) e. A /\ ( ( LSpan ` W ) ` { x } ) C_ U ) -> E. q e. A q C_ U ) |
23 |
19 20 22
|
syl2anc |
|- ( ( ph /\ x e. U /\ x =/= .0. ) -> E. q e. A q C_ U ) |
24 |
23
|
rexlimdv3a |
|- ( ph -> ( E. x e. U x =/= .0. -> E. q e. A q C_ U ) ) |
25 |
9 24
|
mpd |
|- ( ph -> E. q e. A q C_ U ) |