Step |
Hyp |
Ref |
Expression |
1 |
|
dochshpncl.h |
|
2 |
|
dochshpncl.o |
|
3 |
|
dochshpncl.u |
|
4 |
|
dochshpncl.v |
|
5 |
|
dochshpncl.y |
|
6 |
|
dochshpncl.k |
|
7 |
|
dochshpncl.x |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1 3 6
|
dvhlmod |
|
12 |
4 8 9 10 5 11
|
islshpsm |
|
13 |
7 12
|
mpbid |
|
14 |
13
|
simp3d |
|
15 |
14
|
adantr |
|
16 |
|
id |
|
17 |
16
|
adantlr |
|
18 |
17
|
3adant3 |
|
19 |
9 5 11 7
|
lshplss |
|
20 |
4 9
|
lssss |
|
21 |
19 20
|
syl |
|
22 |
1 3 4 2
|
dochocss |
|
23 |
6 21 22
|
syl2anc |
|
24 |
23
|
adantr |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
simp1r |
|
27 |
26
|
necomd |
|
28 |
|
df-pss |
|
29 |
25 27 28
|
sylanbrc |
|
30 |
1 3 4 2
|
dochssv |
|
31 |
6 21 30
|
syl2anc |
|
32 |
1 3 4 2
|
dochssv |
|
33 |
6 31 32
|
syl2anc |
|
34 |
33
|
adantr |
|
35 |
34
|
3ad2ant1 |
|
36 |
|
simp3 |
|
37 |
35 36
|
sseqtrrd |
|
38 |
6
|
adantr |
|
39 |
1 3 38
|
dvhlvec |
|
40 |
19
|
adantr |
|
41 |
1 3 4 9 2
|
dochlss |
|
42 |
6 31 41
|
syl2anc |
|
43 |
42
|
adantr |
|
44 |
|
simpr |
|
45 |
4 9 8 10 39 40 43 44
|
lsmcv |
|
46 |
18 29 37 45
|
syl3anc |
|
47 |
46 36
|
eqtrd |
|
48 |
47
|
rexlimdv3a |
|
49 |
15 48
|
mpd |
|
50 |
|
simpr |
|
51 |
4 5 11 7
|
lshpne |
|
52 |
51
|
adantr |
|
53 |
52
|
necomd |
|
54 |
50 53
|
eqnetrd |
|
55 |
49 54
|
impbida |
|