| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochshpncl.h |
|
| 2 |
|
dochshpncl.o |
|
| 3 |
|
dochshpncl.u |
|
| 4 |
|
dochshpncl.v |
|
| 5 |
|
dochshpncl.y |
|
| 6 |
|
dochshpncl.k |
|
| 7 |
|
dochshpncl.x |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
1 3 6
|
dvhlmod |
|
| 12 |
4 8 9 10 5 11
|
islshpsm |
|
| 13 |
7 12
|
mpbid |
|
| 14 |
13
|
simp3d |
|
| 15 |
14
|
adantr |
|
| 16 |
|
id |
|
| 17 |
16
|
adantlr |
|
| 18 |
17
|
3adant3 |
|
| 19 |
9 5 11 7
|
lshplss |
|
| 20 |
4 9
|
lssss |
|
| 21 |
19 20
|
syl |
|
| 22 |
1 3 4 2
|
dochocss |
|
| 23 |
6 21 22
|
syl2anc |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
|
simp1r |
|
| 27 |
26
|
necomd |
|
| 28 |
|
df-pss |
|
| 29 |
25 27 28
|
sylanbrc |
|
| 30 |
1 3 4 2
|
dochssv |
|
| 31 |
6 21 30
|
syl2anc |
|
| 32 |
1 3 4 2
|
dochssv |
|
| 33 |
6 31 32
|
syl2anc |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
|
simp3 |
|
| 37 |
35 36
|
sseqtrrd |
|
| 38 |
6
|
adantr |
|
| 39 |
1 3 38
|
dvhlvec |
|
| 40 |
19
|
adantr |
|
| 41 |
1 3 4 9 2
|
dochlss |
|
| 42 |
6 31 41
|
syl2anc |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
4 9 8 10 39 40 43 44
|
lsmcv |
|
| 46 |
18 29 37 45
|
syl3anc |
|
| 47 |
46 36
|
eqtrd |
|
| 48 |
47
|
rexlimdv3a |
|
| 49 |
15 48
|
mpd |
|
| 50 |
|
simpr |
|
| 51 |
4 5 11 7
|
lshpne |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
necomd |
|
| 54 |
50 53
|
eqnetrd |
|
| 55 |
49 54
|
impbida |
|