| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochshpncl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochshpncl.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochshpncl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochshpncl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochshpncl.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
| 6 |
|
dochshpncl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dochshpncl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |
| 8 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 11 |
1 3 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 12 |
4 8 9 10 5 11
|
islshpsm |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑌 ↔ ( 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ∧ 𝑋 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
| 13 |
7 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ∧ 𝑋 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
| 14 |
13
|
simp3d |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑉 ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) → ∃ 𝑣 ∈ 𝑉 ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) |
| 16 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ) |
| 18 |
17
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ) |
| 19 |
9 5 11 7
|
lshplss |
⊢ ( 𝜑 → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 20 |
4 9
|
lssss |
⊢ ( 𝑋 ∈ ( LSubSp ‘ 𝑈 ) → 𝑋 ⊆ 𝑉 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 22 |
1 3 4 2
|
dochocss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 23 |
6 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 25 |
24
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 26 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) |
| 27 |
26
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → 𝑋 ≠ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 28 |
|
df-pss |
⊢ ( 𝑋 ⊊ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ↔ ( 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑋 ≠ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 29 |
25 27 28
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → 𝑋 ⊊ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 30 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 31 |
6 21 30
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 32 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 33 |
6 31 32
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 36 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) |
| 37 |
35 36
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 38 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 39 |
1 3 38
|
dvhlvec |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑈 ∈ LVec ) |
| 40 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 41 |
1 3 4 9 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 42 |
6 31 41
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
| 45 |
4 9 8 10 39 40 43 44
|
lsmcv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑋 ⊊ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 46 |
18 29 37 45
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 47 |
46 36
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |
| 48 |
47
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) → ( ∃ 𝑣 ∈ 𝑉 ( 𝑋 ( LSSum ‘ 𝑈 ) ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = 𝑉 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) ) |
| 49 |
15 48
|
mpd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |
| 51 |
4 5 11 7
|
lshpne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑉 ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) → 𝑋 ≠ 𝑉 ) |
| 53 |
52
|
necomd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) → 𝑉 ≠ 𝑋 ) |
| 54 |
50 53
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ) |
| 55 |
49 54
|
impbida |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) ) |