Step |
Hyp |
Ref |
Expression |
1 |
|
dochlkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochlkr.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochlkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochlkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
5 |
|
dochlkr.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
6 |
|
dochlkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
dochlkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dochlkr.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
10 |
1 3 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
11 |
9 4 6 10 8
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) |
12 |
1 3 9 2
|
dochocss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
13 |
7 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
15 |
1 3 7
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → 𝑈 ∈ LVec ) |
17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → 𝑈 ∈ LMod ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) |
19 |
9 5 17 18
|
lshpne |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) ) |
20 |
19
|
ex |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) ) ) |
21 |
9 5 4 6 15 8
|
lkrshpor |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ∨ ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) ) |
22 |
21
|
ord |
⊢ ( 𝜑 → ( ¬ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 → ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) ) |
23 |
|
2fveq3 |
⊢ ( ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) ) |
25 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
1 3 2 9 25
|
dochoc1 |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
27 |
24 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( Base ‘ 𝑈 ) ) |
28 |
27
|
ex |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( Base ‘ 𝑈 ) ) ) |
29 |
22 28
|
syld |
⊢ ( 𝜑 → ( ¬ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( Base ‘ 𝑈 ) ) ) |
30 |
29
|
necon1ad |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) → ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) ) |
31 |
20 30
|
syld |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 → ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) ) |
32 |
31
|
imp |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) |
33 |
5 16 32 18
|
lshpcmp |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ↔ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) ) |
34 |
14 33
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
36 |
35 32
|
jca |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) ) ) |
38 |
|
eleq1 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ↔ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) ) |
39 |
38
|
biimpar |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) |
40 |
37 39
|
impbid1 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ 𝑌 ) ) ) |