Metamath Proof Explorer


Theorem dochfln0

Description: The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses dochfln0.h H = LHyp K
dochfln0.o ˙ = ocH K W
dochfln0.u U = DVecH K W
dochfln0.v V = Base U
dochfln0.r R = Scalar U
dochfln0.n N = 0 R
dochfln0.z 0 ˙ = 0 U
dochfln0.f F = LFnl U
dochfln0.l L = LKer U
dochfln0.k φ K HL W H
dochfln0.g φ G F
dochfln0.x φ X ˙ L G 0 ˙
Assertion dochfln0 φ G X N

Proof

Step Hyp Ref Expression
1 dochfln0.h H = LHyp K
2 dochfln0.o ˙ = ocH K W
3 dochfln0.u U = DVecH K W
4 dochfln0.v V = Base U
5 dochfln0.r R = Scalar U
6 dochfln0.n N = 0 R
7 dochfln0.z 0 ˙ = 0 U
8 dochfln0.f F = LFnl U
9 dochfln0.l L = LKer U
10 dochfln0.k φ K HL W H
11 dochfln0.g φ G F
12 dochfln0.x φ X ˙ L G 0 ˙
13 1 3 10 dvhlmod φ U LMod
14 4 8 9 13 11 lkrssv φ L G V
15 1 3 4 2 dochssv K HL W H L G V ˙ L G V
16 10 14 15 syl2anc φ ˙ L G V
17 16 ssdifd φ ˙ L G 0 ˙ V 0 ˙
18 17 12 sseldd φ X V 0 ˙
19 1 2 3 4 7 10 18 dochnel φ ¬ X ˙ X
20 12 eldifad φ X ˙ L G
21 16 20 sseldd φ X V
22 21 biantrurd φ G X = N X V G X = N
23 4 5 6 8 9 ellkr U LMod G F X L G X V G X = N
24 13 11 23 syl2anc φ X L G X V G X = N
25 1 2 3 4 7 8 9 10 11 12 dochsnkr φ L G = ˙ X
26 25 eleq2d φ X L G X ˙ X
27 22 24 26 3bitr2rd φ X ˙ X G X = N
28 27 necon3bbid φ ¬ X ˙ X G X N
29 19 28 mpbid φ G X N