Metamath Proof Explorer


Theorem dochkr1

Description: A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 . (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses dochkr1.h H=LHypK
dochkr1.o ˙=ocHKW
dochkr1.u U=DVecHKW
dochkr1.v V=BaseU
dochkr1.r R=ScalarU
dochkr1.z 0˙=0U
dochkr1.i 1˙=1R
dochkr1.f F=LFnlU
dochkr1.l L=LKerU
dochkr1.k φKHLWH
dochkr1.g φGF
dochkr1.n φ˙˙LGV
Assertion dochkr1 φx˙LG0˙Gx=1˙

Proof

Step Hyp Ref Expression
1 dochkr1.h H=LHypK
2 dochkr1.o ˙=ocHKW
3 dochkr1.u U=DVecHKW
4 dochkr1.v V=BaseU
5 dochkr1.r R=ScalarU
6 dochkr1.z 0˙=0U
7 dochkr1.i 1˙=1R
8 dochkr1.f F=LFnlU
9 dochkr1.l L=LKerU
10 dochkr1.k φKHLWH
11 dochkr1.g φGF
12 dochkr1.n φ˙˙LGV
13 eqid 0U=0U
14 eqid LSAtomsU=LSAtomsU
15 1 3 10 dvhlmod φULMod
16 1 2 3 4 14 8 9 10 11 dochkrsat2 φ˙˙LGV˙LGLSAtomsU
17 12 16 mpbid φ˙LGLSAtomsU
18 13 14 15 17 lsateln0 φz˙LGz0U
19 eqid 0R=0R
20 10 ad2antrr φz˙LGz0UKHLWH
21 11 ad2antrr φz˙LGz0UGF
22 eldifsn z˙LG0Uz˙LGz0U
23 22 biimpri z˙LGz0Uz˙LG0U
24 23 adantll φz˙LGz0Uz˙LG0U
25 1 2 3 4 5 19 13 8 9 20 21 24 dochfln0 φz˙LGz0UGz0R
26 25 ex φz˙LGz0UGz0R
27 26 reximdva φz˙LGz0Uz˙LGGz0R
28 18 27 mpd φz˙LGGz0R
29 4 8 9 15 11 lkrssv φLGV
30 eqid LSubSpU=LSubSpU
31 1 3 4 30 2 dochlss KHLWHLGV˙LGLSubSpU
32 10 29 31 syl2anc φ˙LGLSubSpU
33 15 32 jca φULMod˙LGLSubSpU
34 33 3ad2ant1 φz˙LGGz0RULMod˙LGLSubSpU
35 1 3 10 dvhlvec φULVec
36 35 3ad2ant1 φz˙LGGz0RULVec
37 5 lvecdrng ULVecRDivRing
38 36 37 syl φz˙LGGz0RRDivRing
39 15 3ad2ant1 φz˙LGGz0RULMod
40 11 3ad2ant1 φz˙LGGz0RGF
41 1 3 4 2 dochssv KHLWHLGV˙LGV
42 10 29 41 syl2anc φ˙LGV
43 42 sselda φz˙LGzV
44 43 3adant3 φz˙LGGz0RzV
45 eqid BaseR=BaseR
46 5 45 4 8 lflcl ULModGFzVGzBaseR
47 39 40 44 46 syl3anc φz˙LGGz0RGzBaseR
48 simp3 φz˙LGGz0RGz0R
49 eqid invrR=invrR
50 45 19 49 drnginvrcl RDivRingGzBaseRGz0RinvrRGzBaseR
51 38 47 48 50 syl3anc φz˙LGGz0RinvrRGzBaseR
52 simp2 φz˙LGGz0Rz˙LG
53 51 52 jca φz˙LGGz0RinvrRGzBaseRz˙LG
54 eqid U=U
55 5 54 45 30 lssvscl ULMod˙LGLSubSpUinvrRGzBaseRz˙LGinvrRGzUz˙LG
56 34 53 55 syl2anc φz˙LGGz0RinvrRGzUz˙LG
57 45 19 49 drnginvrn0 RDivRingGzBaseRGz0RinvrRGz0R
58 38 47 48 57 syl3anc φz˙LGGz0RinvrRGz0R
59 15 adantr φz˙LGULMod
60 11 adantr φz˙LGGF
61 5 19 6 8 lfl0 ULModGFG0˙=0R
62 59 60 61 syl2anc φz˙LGG0˙=0R
63 fveqeq2 z=0˙Gz=0RG0˙=0R
64 62 63 syl5ibrcom φz˙LGz=0˙Gz=0R
65 64 necon3d φz˙LGGz0Rz0˙
66 65 3impia φz˙LGGz0Rz0˙
67 4 54 5 45 19 6 36 51 44 lvecvsn0 φz˙LGGz0RinvrRGzUz0˙invrRGz0Rz0˙
68 58 66 67 mpbir2and φz˙LGGz0RinvrRGzUz0˙
69 eldifsn invrRGzUz˙LG0˙invrRGzUz˙LGinvrRGzUz0˙
70 56 68 69 sylanbrc φz˙LGGz0RinvrRGzUz˙LG0˙
71 eqid R=R
72 5 45 71 4 54 8 lflmul ULModGFinvrRGzBaseRzVGinvrRGzUz=invrRGzRGz
73 39 40 51 44 72 syl112anc φz˙LGGz0RGinvrRGzUz=invrRGzRGz
74 45 19 71 7 49 drnginvrl RDivRingGzBaseRGz0RinvrRGzRGz=1˙
75 38 47 48 74 syl3anc φz˙LGGz0RinvrRGzRGz=1˙
76 73 75 eqtrd φz˙LGGz0RGinvrRGzUz=1˙
77 fveqeq2 x=invrRGzUzGx=1˙GinvrRGzUz=1˙
78 77 rspcev invrRGzUz˙LG0˙GinvrRGzUz=1˙x˙LG0˙Gx=1˙
79 70 76 78 syl2anc φz˙LGGz0Rx˙LG0˙Gx=1˙
80 79 rexlimdv3a φz˙LGGz0Rx˙LG0˙Gx=1˙
81 28 80 mpd φx˙LG0˙Gx=1˙