Metamath Proof Explorer


Theorem dochkr1

Description: A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 . (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses dochkr1.h H = LHyp K
dochkr1.o ˙ = ocH K W
dochkr1.u U = DVecH K W
dochkr1.v V = Base U
dochkr1.r R = Scalar U
dochkr1.z 0 ˙ = 0 U
dochkr1.i 1 ˙ = 1 R
dochkr1.f F = LFnl U
dochkr1.l L = LKer U
dochkr1.k φ K HL W H
dochkr1.g φ G F
dochkr1.n φ ˙ ˙ L G V
Assertion dochkr1 φ x ˙ L G 0 ˙ G x = 1 ˙

Proof

Step Hyp Ref Expression
1 dochkr1.h H = LHyp K
2 dochkr1.o ˙ = ocH K W
3 dochkr1.u U = DVecH K W
4 dochkr1.v V = Base U
5 dochkr1.r R = Scalar U
6 dochkr1.z 0 ˙ = 0 U
7 dochkr1.i 1 ˙ = 1 R
8 dochkr1.f F = LFnl U
9 dochkr1.l L = LKer U
10 dochkr1.k φ K HL W H
11 dochkr1.g φ G F
12 dochkr1.n φ ˙ ˙ L G V
13 eqid 0 U = 0 U
14 eqid LSAtoms U = LSAtoms U
15 1 3 10 dvhlmod φ U LMod
16 1 2 3 4 14 8 9 10 11 dochkrsat2 φ ˙ ˙ L G V ˙ L G LSAtoms U
17 12 16 mpbid φ ˙ L G LSAtoms U
18 13 14 15 17 lsateln0 φ z ˙ L G z 0 U
19 eqid 0 R = 0 R
20 10 ad2antrr φ z ˙ L G z 0 U K HL W H
21 11 ad2antrr φ z ˙ L G z 0 U G F
22 eldifsn z ˙ L G 0 U z ˙ L G z 0 U
23 22 biimpri z ˙ L G z 0 U z ˙ L G 0 U
24 23 adantll φ z ˙ L G z 0 U z ˙ L G 0 U
25 1 2 3 4 5 19 13 8 9 20 21 24 dochfln0 φ z ˙ L G z 0 U G z 0 R
26 25 ex φ z ˙ L G z 0 U G z 0 R
27 26 reximdva φ z ˙ L G z 0 U z ˙ L G G z 0 R
28 18 27 mpd φ z ˙ L G G z 0 R
29 4 8 9 15 11 lkrssv φ L G V
30 eqid LSubSp U = LSubSp U
31 1 3 4 30 2 dochlss K HL W H L G V ˙ L G LSubSp U
32 10 29 31 syl2anc φ ˙ L G LSubSp U
33 15 32 jca φ U LMod ˙ L G LSubSp U
34 33 3ad2ant1 φ z ˙ L G G z 0 R U LMod ˙ L G LSubSp U
35 1 3 10 dvhlvec φ U LVec
36 35 3ad2ant1 φ z ˙ L G G z 0 R U LVec
37 5 lvecdrng U LVec R DivRing
38 36 37 syl φ z ˙ L G G z 0 R R DivRing
39 15 3ad2ant1 φ z ˙ L G G z 0 R U LMod
40 11 3ad2ant1 φ z ˙ L G G z 0 R G F
41 1 3 4 2 dochssv K HL W H L G V ˙ L G V
42 10 29 41 syl2anc φ ˙ L G V
43 42 sselda φ z ˙ L G z V
44 43 3adant3 φ z ˙ L G G z 0 R z V
45 eqid Base R = Base R
46 5 45 4 8 lflcl U LMod G F z V G z Base R
47 39 40 44 46 syl3anc φ z ˙ L G G z 0 R G z Base R
48 simp3 φ z ˙ L G G z 0 R G z 0 R
49 eqid inv r R = inv r R
50 45 19 49 drnginvrcl R DivRing G z Base R G z 0 R inv r R G z Base R
51 38 47 48 50 syl3anc φ z ˙ L G G z 0 R inv r R G z Base R
52 simp2 φ z ˙ L G G z 0 R z ˙ L G
53 51 52 jca φ z ˙ L G G z 0 R inv r R G z Base R z ˙ L G
54 eqid U = U
55 5 54 45 30 lssvscl U LMod ˙ L G LSubSp U inv r R G z Base R z ˙ L G inv r R G z U z ˙ L G
56 34 53 55 syl2anc φ z ˙ L G G z 0 R inv r R G z U z ˙ L G
57 45 19 49 drnginvrn0 R DivRing G z Base R G z 0 R inv r R G z 0 R
58 38 47 48 57 syl3anc φ z ˙ L G G z 0 R inv r R G z 0 R
59 15 adantr φ z ˙ L G U LMod
60 11 adantr φ z ˙ L G G F
61 5 19 6 8 lfl0 U LMod G F G 0 ˙ = 0 R
62 59 60 61 syl2anc φ z ˙ L G G 0 ˙ = 0 R
63 fveqeq2 z = 0 ˙ G z = 0 R G 0 ˙ = 0 R
64 62 63 syl5ibrcom φ z ˙ L G z = 0 ˙ G z = 0 R
65 64 necon3d φ z ˙ L G G z 0 R z 0 ˙
66 65 3impia φ z ˙ L G G z 0 R z 0 ˙
67 4 54 5 45 19 6 36 51 44 lvecvsn0 φ z ˙ L G G z 0 R inv r R G z U z 0 ˙ inv r R G z 0 R z 0 ˙
68 58 66 67 mpbir2and φ z ˙ L G G z 0 R inv r R G z U z 0 ˙
69 eldifsn inv r R G z U z ˙ L G 0 ˙ inv r R G z U z ˙ L G inv r R G z U z 0 ˙
70 56 68 69 sylanbrc φ z ˙ L G G z 0 R inv r R G z U z ˙ L G 0 ˙
71 eqid R = R
72 5 45 71 4 54 8 lflmul U LMod G F inv r R G z Base R z V G inv r R G z U z = inv r R G z R G z
73 39 40 51 44 72 syl112anc φ z ˙ L G G z 0 R G inv r R G z U z = inv r R G z R G z
74 45 19 71 7 49 drnginvrl R DivRing G z Base R G z 0 R inv r R G z R G z = 1 ˙
75 38 47 48 74 syl3anc φ z ˙ L G G z 0 R inv r R G z R G z = 1 ˙
76 73 75 eqtrd φ z ˙ L G G z 0 R G inv r R G z U z = 1 ˙
77 fveqeq2 x = inv r R G z U z G x = 1 ˙ G inv r R G z U z = 1 ˙
78 77 rspcev inv r R G z U z ˙ L G 0 ˙ G inv r R G z U z = 1 ˙ x ˙ L G 0 ˙ G x = 1 ˙
79 70 76 78 syl2anc φ z ˙ L G G z 0 R x ˙ L G 0 ˙ G x = 1 ˙
80 79 rexlimdv3a φ z ˙ L G G z 0 R x ˙ L G 0 ˙ G x = 1 ˙
81 28 80 mpd φ x ˙ L G 0 ˙ G x = 1 ˙