| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochkr1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochkr1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
dochkr1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dochkr1.v |
|- V = ( Base ` U ) |
| 5 |
|
dochkr1.r |
|- R = ( Scalar ` U ) |
| 6 |
|
dochkr1.z |
|- .0. = ( 0g ` U ) |
| 7 |
|
dochkr1.i |
|- .1. = ( 1r ` R ) |
| 8 |
|
dochkr1.f |
|- F = ( LFnl ` U ) |
| 9 |
|
dochkr1.l |
|- L = ( LKer ` U ) |
| 10 |
|
dochkr1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
dochkr1.g |
|- ( ph -> G e. F ) |
| 12 |
|
dochkr1.n |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V ) |
| 13 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 14 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 15 |
1 3 10
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 16 |
1 2 3 4 14 8 9 10 11
|
dochkrsat2 |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) ) |
| 17 |
12 16
|
mpbid |
|- ( ph -> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) |
| 18 |
13 14 15 17
|
lsateln0 |
|- ( ph -> E. z e. ( ._|_ ` ( L ` G ) ) z =/= ( 0g ` U ) ) |
| 19 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 20 |
10
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) /\ z =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 21 |
11
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) /\ z =/= ( 0g ` U ) ) -> G e. F ) |
| 22 |
|
eldifsn |
|- ( z e. ( ( ._|_ ` ( L ` G ) ) \ { ( 0g ` U ) } ) <-> ( z e. ( ._|_ ` ( L ` G ) ) /\ z =/= ( 0g ` U ) ) ) |
| 23 |
22
|
biimpri |
|- ( ( z e. ( ._|_ ` ( L ` G ) ) /\ z =/= ( 0g ` U ) ) -> z e. ( ( ._|_ ` ( L ` G ) ) \ { ( 0g ` U ) } ) ) |
| 24 |
23
|
adantll |
|- ( ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) /\ z =/= ( 0g ` U ) ) -> z e. ( ( ._|_ ` ( L ` G ) ) \ { ( 0g ` U ) } ) ) |
| 25 |
1 2 3 4 5 19 13 8 9 20 21 24
|
dochfln0 |
|- ( ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) /\ z =/= ( 0g ` U ) ) -> ( G ` z ) =/= ( 0g ` R ) ) |
| 26 |
25
|
ex |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> ( z =/= ( 0g ` U ) -> ( G ` z ) =/= ( 0g ` R ) ) ) |
| 27 |
26
|
reximdva |
|- ( ph -> ( E. z e. ( ._|_ ` ( L ` G ) ) z =/= ( 0g ` U ) -> E. z e. ( ._|_ ` ( L ` G ) ) ( G ` z ) =/= ( 0g ` R ) ) ) |
| 28 |
18 27
|
mpd |
|- ( ph -> E. z e. ( ._|_ ` ( L ` G ) ) ( G ` z ) =/= ( 0g ` R ) ) |
| 29 |
4 8 9 15 11
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
| 30 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 31 |
1 3 4 30 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ V ) -> ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) |
| 32 |
10 29 31
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) |
| 33 |
15 32
|
jca |
|- ( ph -> ( U e. LMod /\ ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( U e. LMod /\ ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) ) |
| 35 |
1 3 10
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 36 |
35
|
3ad2ant1 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> U e. LVec ) |
| 37 |
5
|
lvecdrng |
|- ( U e. LVec -> R e. DivRing ) |
| 38 |
36 37
|
syl |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> R e. DivRing ) |
| 39 |
15
|
3ad2ant1 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> U e. LMod ) |
| 40 |
11
|
3ad2ant1 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> G e. F ) |
| 41 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ V ) -> ( ._|_ ` ( L ` G ) ) C_ V ) |
| 42 |
10 29 41
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) C_ V ) |
| 43 |
42
|
sselda |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> z e. V ) |
| 44 |
43
|
3adant3 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> z e. V ) |
| 45 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 46 |
5 45 4 8
|
lflcl |
|- ( ( U e. LMod /\ G e. F /\ z e. V ) -> ( G ` z ) e. ( Base ` R ) ) |
| 47 |
39 40 44 46
|
syl3anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( G ` z ) e. ( Base ` R ) ) |
| 48 |
|
simp3 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( G ` z ) =/= ( 0g ` R ) ) |
| 49 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 50 |
45 19 49
|
drnginvrcl |
|- ( ( R e. DivRing /\ ( G ` z ) e. ( Base ` R ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( invr ` R ) ` ( G ` z ) ) e. ( Base ` R ) ) |
| 51 |
38 47 48 50
|
syl3anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( invr ` R ) ` ( G ` z ) ) e. ( Base ` R ) ) |
| 52 |
|
simp2 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> z e. ( ._|_ ` ( L ` G ) ) ) |
| 53 |
51 52
|
jca |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) e. ( Base ` R ) /\ z e. ( ._|_ ` ( L ` G ) ) ) ) |
| 54 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 55 |
5 54 45 30
|
lssvscl |
|- ( ( ( U e. LMod /\ ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) /\ ( ( ( invr ` R ) ` ( G ` z ) ) e. ( Base ` R ) /\ z e. ( ._|_ ` ( L ` G ) ) ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) e. ( ._|_ ` ( L ` G ) ) ) |
| 56 |
34 53 55
|
syl2anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) e. ( ._|_ ` ( L ` G ) ) ) |
| 57 |
45 19 49
|
drnginvrn0 |
|- ( ( R e. DivRing /\ ( G ` z ) e. ( Base ` R ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( invr ` R ) ` ( G ` z ) ) =/= ( 0g ` R ) ) |
| 58 |
38 47 48 57
|
syl3anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( invr ` R ) ` ( G ` z ) ) =/= ( 0g ` R ) ) |
| 59 |
15
|
adantr |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> U e. LMod ) |
| 60 |
11
|
adantr |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> G e. F ) |
| 61 |
5 19 6 8
|
lfl0 |
|- ( ( U e. LMod /\ G e. F ) -> ( G ` .0. ) = ( 0g ` R ) ) |
| 62 |
59 60 61
|
syl2anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> ( G ` .0. ) = ( 0g ` R ) ) |
| 63 |
|
fveqeq2 |
|- ( z = .0. -> ( ( G ` z ) = ( 0g ` R ) <-> ( G ` .0. ) = ( 0g ` R ) ) ) |
| 64 |
62 63
|
syl5ibrcom |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> ( z = .0. -> ( G ` z ) = ( 0g ` R ) ) ) |
| 65 |
64
|
necon3d |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) ) -> ( ( G ` z ) =/= ( 0g ` R ) -> z =/= .0. ) ) |
| 66 |
65
|
3impia |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> z =/= .0. ) |
| 67 |
4 54 5 45 19 6 36 51 44
|
lvecvsn0 |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) =/= .0. <-> ( ( ( invr ` R ) ` ( G ` z ) ) =/= ( 0g ` R ) /\ z =/= .0. ) ) ) |
| 68 |
58 66 67
|
mpbir2and |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) =/= .0. ) |
| 69 |
|
eldifsn |
|- ( ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) <-> ( ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) e. ( ._|_ ` ( L ` G ) ) /\ ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) =/= .0. ) ) |
| 70 |
56 68 69
|
sylanbrc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
| 71 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 72 |
5 45 71 4 54 8
|
lflmul |
|- ( ( U e. LMod /\ G e. F /\ ( ( ( invr ` R ) ` ( G ` z ) ) e. ( Base ` R ) /\ z e. V ) ) -> ( G ` ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) ) = ( ( ( invr ` R ) ` ( G ` z ) ) ( .r ` R ) ( G ` z ) ) ) |
| 73 |
39 40 51 44 72
|
syl112anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( G ` ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) ) = ( ( ( invr ` R ) ` ( G ` z ) ) ( .r ` R ) ( G ` z ) ) ) |
| 74 |
45 19 71 7 49
|
drnginvrl |
|- ( ( R e. DivRing /\ ( G ` z ) e. ( Base ` R ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) ( .r ` R ) ( G ` z ) ) = .1. ) |
| 75 |
38 47 48 74
|
syl3anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( ( ( invr ` R ) ` ( G ` z ) ) ( .r ` R ) ( G ` z ) ) = .1. ) |
| 76 |
73 75
|
eqtrd |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> ( G ` ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) ) = .1. ) |
| 77 |
|
fveqeq2 |
|- ( x = ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) -> ( ( G ` x ) = .1. <-> ( G ` ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) ) = .1. ) ) |
| 78 |
77
|
rspcev |
|- ( ( ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) /\ ( G ` ( ( ( invr ` R ) ` ( G ` z ) ) ( .s ` U ) z ) ) = .1. ) -> E. x e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ( G ` x ) = .1. ) |
| 79 |
70 76 78
|
syl2anc |
|- ( ( ph /\ z e. ( ._|_ ` ( L ` G ) ) /\ ( G ` z ) =/= ( 0g ` R ) ) -> E. x e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ( G ` x ) = .1. ) |
| 80 |
79
|
rexlimdv3a |
|- ( ph -> ( E. z e. ( ._|_ ` ( L ` G ) ) ( G ` z ) =/= ( 0g ` R ) -> E. x e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ( G ` x ) = .1. ) ) |
| 81 |
28 80
|
mpd |
|- ( ph -> E. x e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ( G ` x ) = .1. ) |