Metamath Proof Explorer


Theorem dochkrsat2

Description: The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochkrsat2.h H = LHyp K
dochkrsat2.o ˙ = ocH K W
dochkrsat2.u U = DVecH K W
dochkrsat2.v V = Base U
dochkrsat2.a A = LSAtoms U
dochkrsat2.f F = LFnl U
dochkrsat2.l L = LKer U
dochkrsat2.k φ K HL W H
dochkrsat2.g φ G F
Assertion dochkrsat2 φ ˙ ˙ L G V ˙ L G A

Proof

Step Hyp Ref Expression
1 dochkrsat2.h H = LHyp K
2 dochkrsat2.o ˙ = ocH K W
3 dochkrsat2.u U = DVecH K W
4 dochkrsat2.v V = Base U
5 dochkrsat2.a A = LSAtoms U
6 dochkrsat2.f F = LFnl U
7 dochkrsat2.l L = LKer U
8 dochkrsat2.k φ K HL W H
9 dochkrsat2.g φ G F
10 eqid 0 U = 0 U
11 1 3 8 dvhlmod φ U LMod
12 4 6 7 11 9 lkrssv φ L G V
13 1 2 3 4 10 8 12 dochn0nv φ ˙ L G 0 U ˙ ˙ L G V
14 1 2 3 5 6 7 10 8 9 dochkrsat φ ˙ L G 0 U ˙ L G A
15 13 14 bitr3d φ ˙ ˙ L G V ˙ L G A