| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochkrsat2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochkrsat2.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochkrsat2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochkrsat2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochkrsat2.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 6 |
|
dochkrsat2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 7 |
|
dochkrsat2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 8 |
|
dochkrsat2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
dochkrsat2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 11 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 12 |
4 6 7 11 9
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
| 13 |
1 2 3 4 10 8 12
|
dochn0nv |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) ) |
| 14 |
1 2 3 5 6 7 10 8 9
|
dochkrsat |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ) ) |
| 15 |
13 14
|
bitr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ) ) |